Godyr commited on
Commit
6e49150
1 Parent(s): f9588af

Upload 12 files

Browse files
README.md CHANGED
@@ -1,3 +1,204 @@
1
  ---
2
- license: llama2
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: unsloth/llama-2-7b
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "down_proj",
26
+ "gate_proj",
27
+ "up_proj",
28
+ "k_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71e866f615a0d0770858fa5d5834b342c95b088bf28e3776d7ec506a1ac709c4
3
+ size 159967880
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc72e9cf7e93c435712b8cb00ae92ba566c991502c103981f5ecdae5263cb52
3
+ size 80630612
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b9dbc25fbf941f9e273ac09aaa9044951664acee87085cd885c7b171de1201d
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba6fc3bed11f2f9e204cf3423f33f7fa03193039d6d51ceb57e1b87925f70b49
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<s>",
29
+ "clean_up_tokenization_spaces": false,
30
+ "eos_token": "</s>",
31
+ "legacy": false,
32
+ "model_max_length": 4096,
33
+ "pad_token": "<unk>",
34
+ "padding_side": "right",
35
+ "sp_model_kwargs": {},
36
+ "tokenizer_class": "LlamaTokenizer",
37
+ "unk_token": "<unk>",
38
+ "use_default_system_prompt": false
39
+ }
trainer_state.json ADDED
@@ -0,0 +1,991 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.986175115207373,
5
+ "eval_steps": 500,
6
+ "global_step": 162,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 4e-05,
14
+ "loss": 2.258,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.04,
19
+ "learning_rate": 8e-05,
20
+ "loss": 2.154,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.06,
25
+ "learning_rate": 0.00012,
26
+ "loss": 2.0787,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.07,
31
+ "learning_rate": 0.00016,
32
+ "loss": 2.1022,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.09,
37
+ "learning_rate": 0.0002,
38
+ "loss": 2.5467,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.11,
43
+ "learning_rate": 0.00019872611464968155,
44
+ "loss": 2.222,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.13,
49
+ "learning_rate": 0.00019745222929936306,
50
+ "loss": 2.1879,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.15,
55
+ "learning_rate": 0.0001961783439490446,
56
+ "loss": 1.8396,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.17,
61
+ "learning_rate": 0.00019490445859872614,
62
+ "loss": 1.8801,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.18,
67
+ "learning_rate": 0.00019363057324840765,
68
+ "loss": 1.9303,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.2,
73
+ "learning_rate": 0.00019235668789808918,
74
+ "loss": 1.7077,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.22,
79
+ "learning_rate": 0.00019108280254777072,
80
+ "loss": 1.8204,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.24,
85
+ "learning_rate": 0.00018980891719745223,
86
+ "loss": 1.7697,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.26,
91
+ "learning_rate": 0.00018853503184713377,
92
+ "loss": 1.7407,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.28,
97
+ "learning_rate": 0.0001872611464968153,
98
+ "loss": 1.7197,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.29,
103
+ "learning_rate": 0.00018598726114649682,
104
+ "loss": 1.6274,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.31,
109
+ "learning_rate": 0.00018471337579617836,
110
+ "loss": 1.7828,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.33,
115
+ "learning_rate": 0.00018343949044585987,
116
+ "loss": 1.6724,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.35,
121
+ "learning_rate": 0.0001821656050955414,
122
+ "loss": 1.6608,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.37,
127
+ "learning_rate": 0.00018089171974522295,
128
+ "loss": 1.7449,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.39,
133
+ "learning_rate": 0.00017961783439490446,
134
+ "loss": 1.724,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.41,
139
+ "learning_rate": 0.000178343949044586,
140
+ "loss": 1.67,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.42,
145
+ "learning_rate": 0.00017707006369426754,
146
+ "loss": 1.5856,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.44,
151
+ "learning_rate": 0.00017579617834394905,
152
+ "loss": 1.7545,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.46,
157
+ "learning_rate": 0.00017452229299363059,
158
+ "loss": 1.7722,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.48,
163
+ "learning_rate": 0.00017324840764331212,
164
+ "loss": 1.5361,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.5,
169
+ "learning_rate": 0.00017197452229299363,
170
+ "loss": 1.6462,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.52,
175
+ "learning_rate": 0.00017070063694267517,
176
+ "loss": 1.5768,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.53,
181
+ "learning_rate": 0.0001694267515923567,
182
+ "loss": 1.7124,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.55,
187
+ "learning_rate": 0.00016815286624203822,
188
+ "loss": 1.5629,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.57,
193
+ "learning_rate": 0.00016687898089171976,
194
+ "loss": 1.6924,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.59,
199
+ "learning_rate": 0.0001656050955414013,
200
+ "loss": 1.5555,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.61,
205
+ "learning_rate": 0.0001643312101910828,
206
+ "loss": 1.6034,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.63,
211
+ "learning_rate": 0.00016305732484076435,
212
+ "loss": 1.6526,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.65,
217
+ "learning_rate": 0.0001617834394904459,
218
+ "loss": 1.4711,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.66,
223
+ "learning_rate": 0.0001605095541401274,
224
+ "loss": 1.592,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.68,
229
+ "learning_rate": 0.00015923566878980894,
230
+ "loss": 1.5779,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.7,
235
+ "learning_rate": 0.00015796178343949047,
236
+ "loss": 1.7425,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.72,
241
+ "learning_rate": 0.00015668789808917199,
242
+ "loss": 1.5372,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.74,
247
+ "learning_rate": 0.00015541401273885352,
248
+ "loss": 1.6526,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.76,
253
+ "learning_rate": 0.00015414012738853506,
254
+ "loss": 1.54,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.77,
259
+ "learning_rate": 0.00015286624203821657,
260
+ "loss": 1.5983,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.79,
265
+ "learning_rate": 0.0001515923566878981,
266
+ "loss": 1.5737,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.81,
271
+ "learning_rate": 0.00015031847133757962,
272
+ "loss": 1.5084,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.83,
277
+ "learning_rate": 0.00014904458598726113,
278
+ "loss": 1.4372,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.85,
283
+ "learning_rate": 0.00014777070063694267,
284
+ "loss": 1.6501,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.87,
289
+ "learning_rate": 0.0001464968152866242,
290
+ "loss": 1.4461,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.88,
295
+ "learning_rate": 0.00014522292993630572,
296
+ "loss": 1.5514,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.9,
301
+ "learning_rate": 0.00014394904458598726,
302
+ "loss": 1.5865,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.92,
307
+ "learning_rate": 0.0001426751592356688,
308
+ "loss": 1.5795,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.94,
313
+ "learning_rate": 0.0001414012738853503,
314
+ "loss": 1.4996,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.96,
319
+ "learning_rate": 0.00014012738853503185,
320
+ "loss": 1.6749,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.98,
325
+ "learning_rate": 0.00013885350318471339,
326
+ "loss": 1.4825,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 1.0,
331
+ "learning_rate": 0.0001375796178343949,
332
+ "loss": 1.5719,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 1.01,
337
+ "learning_rate": 0.00013630573248407644,
338
+ "loss": 1.4932,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 1.03,
343
+ "learning_rate": 0.00013503184713375797,
344
+ "loss": 1.4342,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 1.05,
349
+ "learning_rate": 0.00013375796178343948,
350
+ "loss": 1.4454,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 1.07,
355
+ "learning_rate": 0.00013248407643312102,
356
+ "loss": 1.5273,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 1.09,
361
+ "learning_rate": 0.00013121019108280253,
362
+ "loss": 1.384,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 1.11,
367
+ "learning_rate": 0.00012993630573248407,
368
+ "loss": 1.4851,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 1.12,
373
+ "learning_rate": 0.0001286624203821656,
374
+ "loss": 1.3932,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 1.14,
379
+ "learning_rate": 0.00012738853503184712,
380
+ "loss": 1.479,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 1.16,
385
+ "learning_rate": 0.00012611464968152866,
386
+ "loss": 1.4611,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 1.18,
391
+ "learning_rate": 0.0001248407643312102,
392
+ "loss": 1.4786,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 1.2,
397
+ "learning_rate": 0.0001235668789808917,
398
+ "loss": 1.2568,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 1.22,
403
+ "learning_rate": 0.00012229299363057325,
404
+ "loss": 1.3784,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 1.24,
409
+ "learning_rate": 0.00012101910828025477,
410
+ "loss": 1.4212,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 1.25,
415
+ "learning_rate": 0.00011974522292993631,
416
+ "loss": 1.3157,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 1.27,
421
+ "learning_rate": 0.00011847133757961784,
422
+ "loss": 1.4883,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 1.29,
427
+ "learning_rate": 0.00011719745222929936,
428
+ "loss": 1.4889,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 1.31,
433
+ "learning_rate": 0.0001159235668789809,
434
+ "loss": 1.4213,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 1.33,
439
+ "learning_rate": 0.00011464968152866242,
440
+ "loss": 1.3831,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 1.35,
445
+ "learning_rate": 0.00011337579617834395,
446
+ "loss": 1.4133,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 1.36,
451
+ "learning_rate": 0.00011210191082802549,
452
+ "loss": 1.3613,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 1.38,
457
+ "learning_rate": 0.00011082802547770701,
458
+ "loss": 1.3554,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 1.4,
463
+ "learning_rate": 0.00010955414012738854,
464
+ "loss": 1.4899,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 1.42,
469
+ "learning_rate": 0.00010828025477707007,
470
+ "loss": 1.3935,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 1.44,
475
+ "learning_rate": 0.0001070063694267516,
476
+ "loss": 1.3503,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 1.46,
481
+ "learning_rate": 0.00010573248407643312,
482
+ "loss": 1.3964,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 1.47,
487
+ "learning_rate": 0.00010445859872611465,
488
+ "loss": 1.5109,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 1.49,
493
+ "learning_rate": 0.00010318471337579619,
494
+ "loss": 1.4097,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 1.51,
499
+ "learning_rate": 0.00010191082802547771,
500
+ "loss": 1.313,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 1.53,
505
+ "learning_rate": 0.00010063694267515924,
506
+ "loss": 1.2494,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 1.55,
511
+ "learning_rate": 9.936305732484077e-05,
512
+ "loss": 1.4779,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 1.57,
517
+ "learning_rate": 9.80891719745223e-05,
518
+ "loss": 1.2957,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 1.59,
523
+ "learning_rate": 9.681528662420382e-05,
524
+ "loss": 1.3638,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 1.6,
529
+ "learning_rate": 9.554140127388536e-05,
530
+ "loss": 1.3777,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 1.62,
535
+ "learning_rate": 9.426751592356689e-05,
536
+ "loss": 1.4158,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 1.64,
541
+ "learning_rate": 9.299363057324841e-05,
542
+ "loss": 1.4125,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 1.66,
547
+ "learning_rate": 9.171974522292994e-05,
548
+ "loss": 1.6222,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 1.68,
553
+ "learning_rate": 9.044585987261147e-05,
554
+ "loss": 1.335,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 1.7,
559
+ "learning_rate": 8.9171974522293e-05,
560
+ "loss": 1.3283,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 1.71,
565
+ "learning_rate": 8.789808917197452e-05,
566
+ "loss": 1.3687,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 1.73,
571
+ "learning_rate": 8.662420382165606e-05,
572
+ "loss": 1.345,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 1.75,
577
+ "learning_rate": 8.535031847133759e-05,
578
+ "loss": 1.4534,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 1.77,
583
+ "learning_rate": 8.407643312101911e-05,
584
+ "loss": 1.2561,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 1.79,
589
+ "learning_rate": 8.280254777070065e-05,
590
+ "loss": 1.3999,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 1.81,
595
+ "learning_rate": 8.152866242038217e-05,
596
+ "loss": 1.4159,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 1.82,
601
+ "learning_rate": 8.02547770700637e-05,
602
+ "loss": 1.3375,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 1.84,
607
+ "learning_rate": 7.898089171974524e-05,
608
+ "loss": 1.3709,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 1.86,
613
+ "learning_rate": 7.770700636942676e-05,
614
+ "loss": 1.2414,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 1.88,
619
+ "learning_rate": 7.643312101910829e-05,
620
+ "loss": 1.4125,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 1.9,
625
+ "learning_rate": 7.515923566878981e-05,
626
+ "loss": 1.4631,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.92,
631
+ "learning_rate": 7.388535031847134e-05,
632
+ "loss": 1.2543,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.94,
637
+ "learning_rate": 7.261146496815286e-05,
638
+ "loss": 1.3168,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 1.95,
643
+ "learning_rate": 7.13375796178344e-05,
644
+ "loss": 1.4753,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 1.97,
649
+ "learning_rate": 7.006369426751592e-05,
650
+ "loss": 1.4155,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 1.99,
655
+ "learning_rate": 6.878980891719745e-05,
656
+ "loss": 1.3476,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 2.01,
661
+ "learning_rate": 6.751592356687899e-05,
662
+ "loss": 1.2634,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 2.03,
667
+ "learning_rate": 6.624203821656051e-05,
668
+ "loss": 1.236,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 2.05,
673
+ "learning_rate": 6.496815286624204e-05,
674
+ "loss": 1.1112,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 2.06,
679
+ "learning_rate": 6.369426751592356e-05,
680
+ "loss": 1.2689,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 2.08,
685
+ "learning_rate": 6.24203821656051e-05,
686
+ "loss": 1.2972,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 2.1,
691
+ "learning_rate": 6.114649681528662e-05,
692
+ "loss": 1.2451,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 2.12,
697
+ "learning_rate": 5.9872611464968155e-05,
698
+ "loss": 1.3026,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 2.14,
703
+ "learning_rate": 5.859872611464968e-05,
704
+ "loss": 1.1526,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 2.16,
709
+ "learning_rate": 5.732484076433121e-05,
710
+ "loss": 1.1425,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 2.18,
715
+ "learning_rate": 5.605095541401274e-05,
716
+ "loss": 1.2705,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 2.19,
721
+ "learning_rate": 5.477707006369427e-05,
722
+ "loss": 1.1392,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 2.21,
727
+ "learning_rate": 5.35031847133758e-05,
728
+ "loss": 1.1739,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 2.23,
733
+ "learning_rate": 5.2229299363057324e-05,
734
+ "loss": 1.2004,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 2.25,
739
+ "learning_rate": 5.0955414012738855e-05,
740
+ "loss": 1.2028,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 2.27,
745
+ "learning_rate": 4.968152866242039e-05,
746
+ "loss": 1.1971,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 2.29,
751
+ "learning_rate": 4.840764331210191e-05,
752
+ "loss": 1.1393,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 2.3,
757
+ "learning_rate": 4.713375796178344e-05,
758
+ "loss": 1.1752,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 2.32,
763
+ "learning_rate": 4.585987261146497e-05,
764
+ "loss": 1.2266,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 2.34,
769
+ "learning_rate": 4.45859872611465e-05,
770
+ "loss": 1.2033,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 2.36,
775
+ "learning_rate": 4.331210191082803e-05,
776
+ "loss": 1.1491,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 2.38,
781
+ "learning_rate": 4.2038216560509556e-05,
782
+ "loss": 1.1002,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 2.4,
787
+ "learning_rate": 4.076433121019109e-05,
788
+ "loss": 1.1551,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 2.41,
793
+ "learning_rate": 3.949044585987262e-05,
794
+ "loss": 1.2215,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 2.43,
799
+ "learning_rate": 3.821656050955414e-05,
800
+ "loss": 1.1303,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 2.45,
805
+ "learning_rate": 3.694267515923567e-05,
806
+ "loss": 1.3085,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 2.47,
811
+ "learning_rate": 3.56687898089172e-05,
812
+ "loss": 1.2328,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 2.49,
817
+ "learning_rate": 3.4394904458598724e-05,
818
+ "loss": 1.2315,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 2.51,
823
+ "learning_rate": 3.3121019108280256e-05,
824
+ "loss": 1.2797,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 2.53,
829
+ "learning_rate": 3.184713375796178e-05,
830
+ "loss": 1.2824,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 2.54,
835
+ "learning_rate": 3.057324840764331e-05,
836
+ "loss": 1.3541,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 2.56,
841
+ "learning_rate": 2.929936305732484e-05,
842
+ "loss": 1.2053,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 2.58,
847
+ "learning_rate": 2.802547770700637e-05,
848
+ "loss": 1.0262,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 2.6,
853
+ "learning_rate": 2.67515923566879e-05,
854
+ "loss": 1.1497,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 2.62,
859
+ "learning_rate": 2.5477707006369428e-05,
860
+ "loss": 1.1258,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 2.64,
865
+ "learning_rate": 2.4203821656050956e-05,
866
+ "loss": 1.2115,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 2.65,
871
+ "learning_rate": 2.2929936305732484e-05,
872
+ "loss": 1.2129,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 2.67,
877
+ "learning_rate": 2.1656050955414015e-05,
878
+ "loss": 1.1673,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 2.69,
883
+ "learning_rate": 2.0382165605095544e-05,
884
+ "loss": 1.1702,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 2.71,
889
+ "learning_rate": 1.910828025477707e-05,
890
+ "loss": 1.2379,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 2.73,
895
+ "learning_rate": 1.78343949044586e-05,
896
+ "loss": 1.2548,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 2.75,
901
+ "learning_rate": 1.6560509554140128e-05,
902
+ "loss": 1.1624,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 2.76,
907
+ "learning_rate": 1.5286624203821656e-05,
908
+ "loss": 1.0972,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 2.78,
913
+ "learning_rate": 1.4012738853503186e-05,
914
+ "loss": 1.1634,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 2.8,
919
+ "learning_rate": 1.2738853503184714e-05,
920
+ "loss": 1.1169,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 2.82,
925
+ "learning_rate": 1.1464968152866242e-05,
926
+ "loss": 0.9829,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 2.84,
931
+ "learning_rate": 1.0191082802547772e-05,
932
+ "loss": 1.1863,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 2.86,
937
+ "learning_rate": 8.9171974522293e-06,
938
+ "loss": 1.1772,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 2.88,
943
+ "learning_rate": 7.643312101910828e-06,
944
+ "loss": 1.2474,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 2.89,
949
+ "learning_rate": 6.369426751592357e-06,
950
+ "loss": 1.2136,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 2.91,
955
+ "learning_rate": 5.095541401273886e-06,
956
+ "loss": 1.0309,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 2.93,
961
+ "learning_rate": 3.821656050955414e-06,
962
+ "loss": 1.0609,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 2.95,
967
+ "learning_rate": 2.547770700636943e-06,
968
+ "loss": 1.2989,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 2.97,
973
+ "learning_rate": 1.2738853503184715e-06,
974
+ "loss": 1.1991,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 2.99,
979
+ "learning_rate": 0.0,
980
+ "loss": 1.2027,
981
+ "step": 162
982
+ }
983
+ ],
984
+ "logging_steps": 1,
985
+ "max_steps": 162,
986
+ "num_train_epochs": 3,
987
+ "save_steps": 500,
988
+ "total_flos": 1.4301896344240128e+16,
989
+ "trial_name": null,
990
+ "trial_params": null
991
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fc45b405b7400d4631a31e45055cd4ebbfa37694eb4b04b4e86784652473be9
3
+ size 4536