--- library_name: transformers language: - ur license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - fsicoli/common_voice_19_0 metrics: - wer model-index: - name: Whisper Medium Ur - Your Name results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 19.0 type: fsicoli/common_voice_19_0 config: ur split: test args: 'config: ur, split: test' metrics: - name: Wer type: wer value: 27.720097349677363 --- # Whisper Medium Ur - Your Name This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 19.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3564 - Wer: 27.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3965 | 0.6557 | 500 | 0.3952 | 30.0288 | | 0.3086 | 1.3108 | 1000 | 0.3665 | 27.9635 | | 0.2877 | 1.9666 | 1500 | 0.3564 | 27.7201 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.4.1 - Tokenizers 0.21.0