Upload 4 files
Browse files- PDF-Chatbot/.gitattributes +35 -0
- PDF-Chatbot/README.md +12 -0
- PDF-Chatbot/app.py +378 -0
- PDF-Chatbot/requirements.txt +9 -0
    	
        PDF-Chatbot/.gitattributes
    ADDED
    
    | @@ -0,0 +1,35 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.tar filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
    	
        PDF-Chatbot/README.md
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            title: PDF Chatbot
         | 
| 3 | 
            +
            emoji: 🌍
         | 
| 4 | 
            +
            colorFrom: blue
         | 
| 5 | 
            +
            colorTo: green
         | 
| 6 | 
            +
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 4.36.0
         | 
| 8 | 
            +
            app_file: app.py
         | 
| 9 | 
            +
            pinned: true
         | 
| 10 | 
            +
            ---
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
    	
        PDF-Chatbot/app.py
    ADDED
    
    | @@ -0,0 +1,378 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from langchain_community.document_loaders import PyPDFLoader
         | 
| 5 | 
            +
            from langchain.text_splitter import RecursiveCharacterTextSplitter
         | 
| 6 | 
            +
            from langchain_community.vectorstores import Chroma
         | 
| 7 | 
            +
            from langchain.chains import ConversationalRetrievalChain
         | 
| 8 | 
            +
            from langchain_community.embeddings import HuggingFaceEmbeddings 
         | 
| 9 | 
            +
            from langchain_community.llms import HuggingFacePipeline
         | 
| 10 | 
            +
            from langchain.chains import ConversationChain
         | 
| 11 | 
            +
            from langchain.memory import ConversationBufferMemory
         | 
| 12 | 
            +
            from langchain_community.llms import HuggingFaceEndpoint
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from pathlib import Path
         | 
| 15 | 
            +
            import chromadb
         | 
| 16 | 
            +
            from unidecode import unidecode
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from transformers import AutoTokenizer
         | 
| 19 | 
            +
            import transformers
         | 
| 20 | 
            +
            import torch
         | 
| 21 | 
            +
            import tqdm 
         | 
| 22 | 
            +
            import accelerate
         | 
| 23 | 
            +
            import re
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            # default_persist_directory = './chroma_HF/'
         | 
| 28 | 
            +
            list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
         | 
| 29 | 
            +
                "google/gemma-7b-it","google/gemma-2b-it", \
         | 
| 30 | 
            +
                "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
         | 
| 31 | 
            +
                "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
         | 
| 32 | 
            +
                "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
         | 
| 33 | 
            +
                "google/flan-t5-xxl"
         | 
| 34 | 
            +
            ]
         | 
| 35 | 
            +
            list_llm_simple = [os.path.basename(llm) for llm in list_llm]
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            # Load PDF document and create doc splits
         | 
| 38 | 
            +
            def load_doc(list_file_path, chunk_size, chunk_overlap):
         | 
| 39 | 
            +
                # Processing for one document only
         | 
| 40 | 
            +
                # loader = PyPDFLoader(file_path)
         | 
| 41 | 
            +
                # pages = loader.load()
         | 
| 42 | 
            +
                loaders = [PyPDFLoader(x) for x in list_file_path]
         | 
| 43 | 
            +
                pages = []
         | 
| 44 | 
            +
                for loader in loaders:
         | 
| 45 | 
            +
                    pages.extend(loader.load())
         | 
| 46 | 
            +
                # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
         | 
| 47 | 
            +
                text_splitter = RecursiveCharacterTextSplitter(
         | 
| 48 | 
            +
                    chunk_size = chunk_size, 
         | 
| 49 | 
            +
                    chunk_overlap = chunk_overlap)
         | 
| 50 | 
            +
                doc_splits = text_splitter.split_documents(pages)
         | 
| 51 | 
            +
                return doc_splits
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            # Create vector database
         | 
| 55 | 
            +
            def create_db(splits, collection_name):
         | 
| 56 | 
            +
                embedding = HuggingFaceEmbeddings()
         | 
| 57 | 
            +
                new_client = chromadb.EphemeralClient()
         | 
| 58 | 
            +
                vectordb = Chroma.from_documents(
         | 
| 59 | 
            +
                    documents=splits,
         | 
| 60 | 
            +
                    embedding=embedding,
         | 
| 61 | 
            +
                    client=new_client,
         | 
| 62 | 
            +
                    collection_name=collection_name,
         | 
| 63 | 
            +
                    # persist_directory=default_persist_directory
         | 
| 64 | 
            +
                )
         | 
| 65 | 
            +
                return vectordb
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            # Load vector database
         | 
| 69 | 
            +
            def load_db():
         | 
| 70 | 
            +
                embedding = HuggingFaceEmbeddings()
         | 
| 71 | 
            +
                vectordb = Chroma(
         | 
| 72 | 
            +
                    # persist_directory=default_persist_directory, 
         | 
| 73 | 
            +
                    embedding_function=embedding)
         | 
| 74 | 
            +
                return vectordb
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            # Initialize langchain LLM chain
         | 
| 78 | 
            +
            def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
         | 
| 79 | 
            +
                progress(0.1, desc="Initializing HF tokenizer...")
         | 
| 80 | 
            +
                # HuggingFacePipeline uses local model
         | 
| 81 | 
            +
                # Note: it will download model locally...
         | 
| 82 | 
            +
                # tokenizer=AutoTokenizer.from_pretrained(llm_model)
         | 
| 83 | 
            +
                # progress(0.5, desc="Initializing HF pipeline...")
         | 
| 84 | 
            +
                # pipeline=transformers.pipeline(
         | 
| 85 | 
            +
                #     "text-generation",
         | 
| 86 | 
            +
                #     model=llm_model,
         | 
| 87 | 
            +
                #     tokenizer=tokenizer,
         | 
| 88 | 
            +
                #     torch_dtype=torch.bfloat16,
         | 
| 89 | 
            +
                #     trust_remote_code=True,
         | 
| 90 | 
            +
                #     device_map="auto",
         | 
| 91 | 
            +
                #     # max_length=1024,
         | 
| 92 | 
            +
                #     max_new_tokens=max_tokens,
         | 
| 93 | 
            +
                #     do_sample=True,
         | 
| 94 | 
            +
                #     top_k=top_k,
         | 
| 95 | 
            +
                #     num_return_sequences=1,
         | 
| 96 | 
            +
                #     eos_token_id=tokenizer.eos_token_id
         | 
| 97 | 
            +
                #     )
         | 
| 98 | 
            +
                # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
         | 
| 99 | 
            +
                
         | 
| 100 | 
            +
                # HuggingFaceHub uses HF inference endpoints
         | 
| 101 | 
            +
                progress(0.5, desc="Initializing HF Hub...")
         | 
| 102 | 
            +
                # Use of trust_remote_code as model_kwargs
         | 
| 103 | 
            +
                # Warning: langchain issue
         | 
| 104 | 
            +
                # URL: https://github.com/langchain-ai/langchain/issues/6080
         | 
| 105 | 
            +
                if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
         | 
| 106 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 107 | 
            +
                        repo_id=llm_model, 
         | 
| 108 | 
            +
                        # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
         | 
| 109 | 
            +
                        temperature = temperature,
         | 
| 110 | 
            +
                        max_new_tokens = max_tokens,
         | 
| 111 | 
            +
                        top_k = top_k,
         | 
| 112 | 
            +
                        load_in_8bit = True,
         | 
| 113 | 
            +
                    )
         | 
| 114 | 
            +
                elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
         | 
| 115 | 
            +
                    raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
         | 
| 116 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 117 | 
            +
                        repo_id=llm_model, 
         | 
| 118 | 
            +
                        temperature = temperature,
         | 
| 119 | 
            +
                        max_new_tokens = max_tokens,
         | 
| 120 | 
            +
                        top_k = top_k,
         | 
| 121 | 
            +
                    )
         | 
| 122 | 
            +
                elif llm_model == "microsoft/phi-2":
         | 
| 123 | 
            +
                    # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
         | 
| 124 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 125 | 
            +
                        repo_id=llm_model, 
         | 
| 126 | 
            +
                        # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
         | 
| 127 | 
            +
                        temperature = temperature,
         | 
| 128 | 
            +
                        max_new_tokens = max_tokens,
         | 
| 129 | 
            +
                        top_k = top_k,
         | 
| 130 | 
            +
                        trust_remote_code = True,
         | 
| 131 | 
            +
                        torch_dtype = "auto",
         | 
| 132 | 
            +
                    )
         | 
| 133 | 
            +
                elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
         | 
| 134 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 135 | 
            +
                        repo_id=llm_model, 
         | 
| 136 | 
            +
                        # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
         | 
| 137 | 
            +
                        temperature = temperature,
         | 
| 138 | 
            +
                        max_new_tokens = 250,
         | 
| 139 | 
            +
                        top_k = top_k,
         | 
| 140 | 
            +
                    )
         | 
| 141 | 
            +
                elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
         | 
| 142 | 
            +
                    raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
         | 
| 143 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 144 | 
            +
                        repo_id=llm_model, 
         | 
| 145 | 
            +
                        # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
         | 
| 146 | 
            +
                        temperature = temperature,
         | 
| 147 | 
            +
                        max_new_tokens = max_tokens,
         | 
| 148 | 
            +
                        top_k = top_k,
         | 
| 149 | 
            +
                    )
         | 
| 150 | 
            +
                else:
         | 
| 151 | 
            +
                    llm = HuggingFaceEndpoint(
         | 
| 152 | 
            +
                        repo_id=llm_model, 
         | 
| 153 | 
            +
                        # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
         | 
| 154 | 
            +
                        # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
         | 
| 155 | 
            +
                        temperature = temperature,
         | 
| 156 | 
            +
                        max_new_tokens = max_tokens,
         | 
| 157 | 
            +
                        top_k = top_k,
         | 
| 158 | 
            +
                    )
         | 
| 159 | 
            +
                
         | 
| 160 | 
            +
                progress(0.75, desc="Defining buffer memory...")
         | 
| 161 | 
            +
                memory = ConversationBufferMemory(
         | 
| 162 | 
            +
                    memory_key="chat_history",
         | 
| 163 | 
            +
                    output_key='answer',
         | 
| 164 | 
            +
                    return_messages=True
         | 
| 165 | 
            +
                )
         | 
| 166 | 
            +
                # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
         | 
| 167 | 
            +
                retriever=vector_db.as_retriever()
         | 
| 168 | 
            +
                progress(0.8, desc="Defining retrieval chain...")
         | 
| 169 | 
            +
                qa_chain = ConversationalRetrievalChain.from_llm(
         | 
| 170 | 
            +
                    llm,
         | 
| 171 | 
            +
                    retriever=retriever,
         | 
| 172 | 
            +
                    chain_type="stuff", 
         | 
| 173 | 
            +
                    memory=memory,
         | 
| 174 | 
            +
                    # combine_docs_chain_kwargs={"prompt": your_prompt})
         | 
| 175 | 
            +
                    return_source_documents=True,
         | 
| 176 | 
            +
                    #return_generated_question=False,
         | 
| 177 | 
            +
                    verbose=False,
         | 
| 178 | 
            +
                )
         | 
| 179 | 
            +
                progress(0.9, desc="Done!")
         | 
| 180 | 
            +
                return qa_chain
         | 
| 181 | 
            +
             | 
| 182 | 
            +
             | 
| 183 | 
            +
            # Generate collection name for vector database
         | 
| 184 | 
            +
            #  - Use filepath as input, ensuring unicode text
         | 
| 185 | 
            +
            def create_collection_name(filepath):
         | 
| 186 | 
            +
                # Extract filename without extension
         | 
| 187 | 
            +
                collection_name = Path(filepath).stem
         | 
| 188 | 
            +
                # Fix potential issues from naming convention
         | 
| 189 | 
            +
                ## Remove space
         | 
| 190 | 
            +
                collection_name = collection_name.replace(" ","-") 
         | 
| 191 | 
            +
                ## ASCII transliterations of Unicode text
         | 
| 192 | 
            +
                collection_name = unidecode(collection_name)
         | 
| 193 | 
            +
                ## Remove special characters
         | 
| 194 | 
            +
                #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
         | 
| 195 | 
            +
                collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
         | 
| 196 | 
            +
                ## Limit length to 50 characters
         | 
| 197 | 
            +
                collection_name = collection_name[:50]
         | 
| 198 | 
            +
                ## Minimum length of 3 characters
         | 
| 199 | 
            +
                if len(collection_name) < 3:
         | 
| 200 | 
            +
                    collection_name = collection_name + 'xyz'
         | 
| 201 | 
            +
                ## Enforce start and end as alphanumeric character
         | 
| 202 | 
            +
                if not collection_name[0].isalnum():
         | 
| 203 | 
            +
                    collection_name = 'A' + collection_name[1:]
         | 
| 204 | 
            +
                if not collection_name[-1].isalnum():
         | 
| 205 | 
            +
                    collection_name = collection_name[:-1] + 'Z'
         | 
| 206 | 
            +
                print('Filepath: ', filepath)
         | 
| 207 | 
            +
                print('Collection name: ', collection_name)
         | 
| 208 | 
            +
                return collection_name
         | 
| 209 | 
            +
             | 
| 210 | 
            +
             | 
| 211 | 
            +
            # Initialize database
         | 
| 212 | 
            +
            def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
         | 
| 213 | 
            +
                # Create list of documents (when valid)
         | 
| 214 | 
            +
                list_file_path = [x.name for x in list_file_obj if x is not None]
         | 
| 215 | 
            +
                # Create collection_name for vector database
         | 
| 216 | 
            +
                progress(0.1, desc="Creating collection name...")
         | 
| 217 | 
            +
                collection_name = create_collection_name(list_file_path[0])
         | 
| 218 | 
            +
                progress(0.25, desc="Loading document...")
         | 
| 219 | 
            +
                # Load document and create splits
         | 
| 220 | 
            +
                doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
         | 
| 221 | 
            +
                # Create or load vector database
         | 
| 222 | 
            +
                progress(0.5, desc="Generating vector database...")
         | 
| 223 | 
            +
                # global vector_db
         | 
| 224 | 
            +
                vector_db = create_db(doc_splits, collection_name)
         | 
| 225 | 
            +
                progress(0.9, desc="Done!")
         | 
| 226 | 
            +
                return vector_db, collection_name, "Complete!"
         | 
| 227 | 
            +
             | 
| 228 | 
            +
             | 
| 229 | 
            +
            def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
         | 
| 230 | 
            +
                # print("llm_option",llm_option)
         | 
| 231 | 
            +
                llm_name = list_llm[llm_option]
         | 
| 232 | 
            +
                print("llm_name: ",llm_name)
         | 
| 233 | 
            +
                qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
         | 
| 234 | 
            +
                return qa_chain, "Complete!"
         | 
| 235 | 
            +
             | 
| 236 | 
            +
             | 
| 237 | 
            +
            def format_chat_history(message, chat_history):
         | 
| 238 | 
            +
                formatted_chat_history = []
         | 
| 239 | 
            +
                for user_message, bot_message in chat_history:
         | 
| 240 | 
            +
                    formatted_chat_history.append(f"User: {user_message}")
         | 
| 241 | 
            +
                    formatted_chat_history.append(f"Assistant: {bot_message}")
         | 
| 242 | 
            +
                return formatted_chat_history
         | 
| 243 | 
            +
                
         | 
| 244 | 
            +
             | 
| 245 | 
            +
            def conversation(qa_chain, message, history):
         | 
| 246 | 
            +
                formatted_chat_history = format_chat_history(message, history)
         | 
| 247 | 
            +
                #print("formatted_chat_history",formatted_chat_history)
         | 
| 248 | 
            +
               
         | 
| 249 | 
            +
                # Generate response using QA chain
         | 
| 250 | 
            +
                response = qa_chain({"question": message, "chat_history": formatted_chat_history})
         | 
| 251 | 
            +
                response_answer = response["answer"]
         | 
| 252 | 
            +
                if response_answer.find("Helpful Answer:") != -1:
         | 
| 253 | 
            +
                    response_answer = response_answer.split("Helpful Answer:")[-1]
         | 
| 254 | 
            +
                response_sources = response["source_documents"]
         | 
| 255 | 
            +
                response_source1 = response_sources[0].page_content.strip()
         | 
| 256 | 
            +
                response_source2 = response_sources[1].page_content.strip()
         | 
| 257 | 
            +
                response_source3 = response_sources[2].page_content.strip()
         | 
| 258 | 
            +
                # Langchain sources are zero-based
         | 
| 259 | 
            +
                response_source1_page = response_sources[0].metadata["page"] + 1
         | 
| 260 | 
            +
                response_source2_page = response_sources[1].metadata["page"] + 1
         | 
| 261 | 
            +
                response_source3_page = response_sources[2].metadata["page"] + 1
         | 
| 262 | 
            +
                # print ('chat response: ', response_answer)
         | 
| 263 | 
            +
                # print('DB source', response_sources)
         | 
| 264 | 
            +
                
         | 
| 265 | 
            +
                # Append user message and response to chat history
         | 
| 266 | 
            +
                new_history = history + [(message, response_answer)]
         | 
| 267 | 
            +
                # return gr.update(value=""), new_history, response_sources[0], response_sources[1] 
         | 
| 268 | 
            +
                return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
         | 
| 269 | 
            +
                
         | 
| 270 | 
            +
             | 
| 271 | 
            +
            def upload_file(file_obj):
         | 
| 272 | 
            +
                list_file_path = []
         | 
| 273 | 
            +
                for idx, file in enumerate(file_obj):
         | 
| 274 | 
            +
                    file_path = file_obj.name
         | 
| 275 | 
            +
                    list_file_path.append(file_path)
         | 
| 276 | 
            +
                # print(file_path)
         | 
| 277 | 
            +
                # initialize_database(file_path, progress)
         | 
| 278 | 
            +
                return list_file_path
         | 
| 279 | 
            +
             | 
| 280 | 
            +
             | 
| 281 | 
            +
            def demo():
         | 
| 282 | 
            +
                with gr.Blocks(theme="base") as demo:
         | 
| 283 | 
            +
                    vector_db = gr.State()
         | 
| 284 | 
            +
                    qa_chain = gr.State()
         | 
| 285 | 
            +
                    collection_name = gr.State()
         | 
| 286 | 
            +
                    
         | 
| 287 | 
            +
                    gr.Markdown(
         | 
| 288 | 
            +
                    """<center><h2>PDF-based chatbot</center></h2>
         | 
| 289 | 
            +
                    <h3>Ask any questions about your PDF documents</h3>""")
         | 
| 290 | 
            +
                    gr.Markdown(
         | 
| 291 | 
            +
                    """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
         | 
| 292 | 
            +
                    The user interface explicitely shows multiple steps to help understand the RAG workflow. 
         | 
| 293 | 
            +
                    This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
         | 
| 294 | 
            +
                    <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
         | 
| 295 | 
            +
                    """)
         | 
| 296 | 
            +
                    
         | 
| 297 | 
            +
                    with gr.Tab("Step 1 - Upload PDF"):
         | 
| 298 | 
            +
                        with gr.Row():
         | 
| 299 | 
            +
                            document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
         | 
| 300 | 
            +
                            # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
         | 
| 301 | 
            +
                    
         | 
| 302 | 
            +
                    with gr.Tab("Step 2 - Process document"):
         | 
| 303 | 
            +
                        with gr.Row():
         | 
| 304 | 
            +
                            db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
         | 
| 305 | 
            +
                        with gr.Accordion("Advanced options - Document text splitter", open=False):
         | 
| 306 | 
            +
                            with gr.Row():
         | 
| 307 | 
            +
                                slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
         | 
| 308 | 
            +
                            with gr.Row():
         | 
| 309 | 
            +
                                slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
         | 
| 310 | 
            +
                        with gr.Row():
         | 
| 311 | 
            +
                            db_progress = gr.Textbox(label="Vector database initialization", value="None")
         | 
| 312 | 
            +
                        with gr.Row():
         | 
| 313 | 
            +
                            db_btn = gr.Button("Generate vector database")
         | 
| 314 | 
            +
                        
         | 
| 315 | 
            +
                    with gr.Tab("Step 3 - Initialize QA chain"):
         | 
| 316 | 
            +
                        with gr.Row():
         | 
| 317 | 
            +
                            llm_btn = gr.Radio(list_llm_simple, \
         | 
| 318 | 
            +
                                label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
         | 
| 319 | 
            +
                        with gr.Accordion("Advanced options - LLM model", open=False):
         | 
| 320 | 
            +
                            with gr.Row():
         | 
| 321 | 
            +
                                slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
         | 
| 322 | 
            +
                            with gr.Row():
         | 
| 323 | 
            +
                                slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
         | 
| 324 | 
            +
                            with gr.Row():
         | 
| 325 | 
            +
                                slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
         | 
| 326 | 
            +
                        with gr.Row():
         | 
| 327 | 
            +
                            llm_progress = gr.Textbox(value="None",label="QA chain initialization")
         | 
| 328 | 
            +
                        with gr.Row():
         | 
| 329 | 
            +
                            qachain_btn = gr.Button("Initialize Question Answering chain")
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                    with gr.Tab("Step 4 - Chatbot"):
         | 
| 332 | 
            +
                        chatbot = gr.Chatbot(height=300)
         | 
| 333 | 
            +
                        with gr.Accordion("Advanced - Document references", open=False):
         | 
| 334 | 
            +
                            with gr.Row():
         | 
| 335 | 
            +
                                doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
         | 
| 336 | 
            +
                                source1_page = gr.Number(label="Page", scale=1)
         | 
| 337 | 
            +
                            with gr.Row():
         | 
| 338 | 
            +
                                doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
         | 
| 339 | 
            +
                                source2_page = gr.Number(label="Page", scale=1)
         | 
| 340 | 
            +
                            with gr.Row():
         | 
| 341 | 
            +
                                doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
         | 
| 342 | 
            +
                                source3_page = gr.Number(label="Page", scale=1)
         | 
| 343 | 
            +
                        with gr.Row():
         | 
| 344 | 
            +
                            msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
         | 
| 345 | 
            +
                        with gr.Row():
         | 
| 346 | 
            +
                            submit_btn = gr.Button("Submit message")
         | 
| 347 | 
            +
                            clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
         | 
| 348 | 
            +
                        
         | 
| 349 | 
            +
                    # Preprocessing events
         | 
| 350 | 
            +
                    #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
         | 
| 351 | 
            +
                    db_btn.click(initialize_database, \
         | 
| 352 | 
            +
                        inputs=[document, slider_chunk_size, slider_chunk_overlap], \
         | 
| 353 | 
            +
                        outputs=[vector_db, collection_name, db_progress])
         | 
| 354 | 
            +
                    qachain_btn.click(initialize_LLM, \
         | 
| 355 | 
            +
                        inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
         | 
| 356 | 
            +
                        outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
         | 
| 357 | 
            +
                        inputs=None, \
         | 
| 358 | 
            +
                        outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
         | 
| 359 | 
            +
                        queue=False)
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    # Chatbot events
         | 
| 362 | 
            +
                    msg.submit(conversation, \
         | 
| 363 | 
            +
                        inputs=[qa_chain, msg, chatbot], \
         | 
| 364 | 
            +
                        outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
         | 
| 365 | 
            +
                        queue=False)
         | 
| 366 | 
            +
                    submit_btn.click(conversation, \
         | 
| 367 | 
            +
                        inputs=[qa_chain, msg, chatbot], \
         | 
| 368 | 
            +
                        outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
         | 
| 369 | 
            +
                        queue=False)
         | 
| 370 | 
            +
                    clear_btn.click(lambda:[None,"",0,"",0,"",0], \
         | 
| 371 | 
            +
                        inputs=None, \
         | 
| 372 | 
            +
                        outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
         | 
| 373 | 
            +
                        queue=False)
         | 
| 374 | 
            +
                demo.queue().launch(debug=True)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
             | 
| 377 | 
            +
            if __name__ == "__main__":
         | 
| 378 | 
            +
                demo()
         | 
    	
        PDF-Chatbot/requirements.txt
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            torch
         | 
| 2 | 
            +
            transformers
         | 
| 3 | 
            +
            sentence-transformers
         | 
| 4 | 
            +
            langchain
         | 
| 5 | 
            +
            tqdm
         | 
| 6 | 
            +
            accelerate
         | 
| 7 | 
            +
            pypdf
         | 
| 8 | 
            +
            chromadb
         | 
| 9 | 
            +
            unidecode
         | 
