---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2130621
- loss:ContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: Kim Chol-sam
sentences:
- Stankevich Sergey Nikolayevich
- Kim Chin-So’k
- Julen Lopetegui Agote
- source_sentence: دينا بنت عبد الحميد
sentences:
- Alexia van Amsberg
- Anthony Nicholas Colin Maitland Biddulph, 5th Baron Biddulph
- Dina bint Abdul-Hamíd
- source_sentence: Մուհամեդ բեն Նաիֆ Ալ Սաուդ
sentences:
- Karpov Anatoly Evgenyevich
- GNPower Mariveles Coal Plant [former]
- Muhammed bin Nayef bin Abdul Aziz Al Saud
- source_sentence: Edward Gnehm
sentences:
- Шауэрте, Хартмут
- Ханзада Филипп, Эдинбург герцогі
- AFX
- source_sentence: Schori i Lidingö
sentences:
- Yordan Canev
- ကားပေါ့ အန်နာတိုလီ
- BYSTROV, Mikhail Ivanovich
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: sentence transformers paraphrase multilingual MiniLM L12 v2
type: sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2
metrics:
- type: cosine_accuracy
value: 0.9885216725241056
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7183246612548828
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9824706124974221
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7085607051849365
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9782229269572558
name: Cosine Precision
- type: cosine_recall
value: 0.9867553479166427
name: Cosine Recall
- type: cosine_ap
value: 0.9971022799526896
name: Cosine Ap
- type: cosine_mcc
value: 0.9739458779668466
name: Cosine Mcc
---
# sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Schori i Lidingö',
'Yordan Canev',
'ကားပေါ့ အန်နာတိုလီ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.9885 |
| cosine_accuracy_threshold | 0.7183 |
| cosine_f1 | 0.9825 |
| cosine_f1_threshold | 0.7086 |
| cosine_precision | 0.9782 |
| cosine_recall | 0.9868 |
| **cosine_ap** | **0.9971** |
| cosine_mcc | 0.9739 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,130,621 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
캐스린 설리번
| Kathryn D. Sullivanová
| 1.0
|
| ଶିବରାଜ ଅଧାଲରାଓ ପାଟିଲ
| Aleksander Lubocki
| 0.0
|
| Пырванов, Георги
| アナトーリー・セルジュコフ
| 0.0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 2,663,276 evaluation samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Ева Херман
| I Xuan Karlos
| 0.0
|
| Кличков Андрій Євгенович
| Андрэй Яўгенавіч Клычкоў
| 1.0
|
| Кинах А.
| Senator John Hickenlooper
| 0.0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 768
- `per_device_eval_batch_size`: 768
- `gradient_accumulation_steps`: 4
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adafactor
#### All Hyperparameters