H-du-kang commited on
Commit
f2a830e
·
verified ·
1 Parent(s): 3580e1b

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - merge
5
+ - mergekit
6
+ - lazymergekit
7
+ - beomi/kcbert-base
8
+ ---
9
+
10
+ # TAPAS-KCBERT-slerp2
11
+
12
+ TAPAS-KCBERT-slerp2 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
13
+ * [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base)
14
+ * [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base)
15
+
16
+ ## 🧩 Configuration
17
+
18
+ ```yaml
19
+ slices:
20
+ - sources:
21
+ - model: beomi/kcbert-base
22
+ layer_range: [0, 12] # TAPAS 모델의 레이어 범위
23
+ - model: beomi/kcbert-base
24
+ layer_range: [0, 12] # KCBERT 모델의 레이어 범위
25
+ merge_method: slerp
26
+ base_model: beomi/kcbert-base
27
+ parameters:
28
+ t:
29
+ - filter: self_attn
30
+ value: [0, 0.5, 0.3, 0.7, 1]
31
+ - filter: mlp
32
+ value: [1, 0.5, 0.7, 0.3, 0]
33
+ - value: 0.5
34
+ dtype: bfloat16
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "beomi/kcbert-base",
3
+ "architectures": [
4
+ "BertForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 300,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.41.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30000
31
+ }
mergekit_config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ slices:
3
+ - sources:
4
+ - model: beomi/kcbert-base
5
+ layer_range: [0, 12] # TAPAS 모델의 레이어 범위
6
+ - model: beomi/kcbert-base
7
+ layer_range: [0, 12] # KCBERT 모델의 레이어 범위
8
+ merge_method: slerp
9
+ base_model: beomi/kcbert-base
10
+ parameters:
11
+ t:
12
+ - filter: self_attn
13
+ value: [0, 0.5, 0.3, 0.7, 1]
14
+ - filter: mlp
15
+ value: [1, 0.5, 0.7, 0.3, 0]
16
+ - value: 0.5
17
+ dtype: bfloat16
model-00001-of-00001.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c7daf5ec64f44f244be87ba9a807fa2140875be07f1e6f47cb30c8ac36c64e4
3
+ size 264000696
model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"mergekit_version": "0.0.4.2", "total_size": 263977056}, "weight_map": {"bert.embeddings.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.embeddings.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.embeddings.position_embeddings.weight": "model-00001-of-00001.safetensors", "bert.embeddings.token_type_embeddings.weight": "model-00001-of-00001.safetensors", "cls.predictions.decoder.weight": "model-00001-of-00001.safetensors", "bert.embeddings.word_embeddings.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.0.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.1.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.10.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.11.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.2.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.3.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.4.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.5.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.6.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.7.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.8.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.output.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.self.key.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.self.key.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.self.query.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.self.query.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.self.value.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.attention.self.value.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.intermediate.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.intermediate.dense.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.output.LayerNorm.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.output.LayerNorm.weight": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.output.dense.bias": "model-00001-of-00001.safetensors", "bert.encoder.layer.9.output.dense.weight": "model-00001-of-00001.safetensors", "bert.pooler.dense.bias": "model-00001-of-00001.safetensors", "bert.pooler.dense.weight": "model-00001-of-00001.safetensors", "cls.predictions.bias": "model-00001-of-00001.safetensors"}}
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 300,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff