--- license: mit metrics: - f1 - exact_match base_model: - Qwen/Qwen2.5-7B-Instruct pipeline_tag: question-answering library_name: transformers --- # EviOmni-nq_train-7B ## Introduction EviOmni is a rational evidence extraction model. Compared to vanilla evidence extraction models, EviOmni demonstrates the superiority in terms of performance, generalization, efficiency, and robustness. ## Requirements The code of EviOmni has been in the latest Huggingface `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: KeyError: 'qwen2' ## Quickstart from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import StoppingCriteria, StoppingCriteriaList import re class MultiTokenStoppingCriteria(StoppingCriteria): def __init__(self, stop_ids, device): self.stop_ids = stop_ids self.stop_len = len(stop_ids) def __call__(self, input_ids, scores, **kwargs): if len(input_ids[0]) >= self.stop_len: last_tokens = input_ids[0][-self.stop_len:].tolist() return last_tokens == self.stop_ids return False model_name = "HIT-TMG/EviOmni-nq_train-7B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = open("eviomni_prompt", "r").read() question = "..." passages = "..." instruction = prompt.format(question=question, passages=passages) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": instruction} ] stop_token = "\n\n" stop_ids = tokenizer.encode(stop_token, add_special_tokens=False) stopping_criteria = StoppingCriteriaList([ MultiTokenStoppingCriteria(stop_ids, model.device) ]) text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512, stopping_criteria=stopping_criteria ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() match = re.search(r"(.*?)", response, re.DOTALL) evidence = match.group(1).strip() ## Performance Main results. ![main](./img/main_results.jpg) ## Citation If you find our work helpful, feel free to give us a cite. @misc{EviOmni, title={Learning to Extract Rational Evidence via Reinforcement Learning for Retrieval-Augmented Generation}, author={Xinping Zhao and Shouzheng Huang and Yan Zhong and Xinshuo Hu and Meishan Zhang and Baotian Hu and Min Zhang}, year={2025}, eprint={2507.15586}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2507.15586}, }