Paper
LLaSA: Scaling Train-Time and Test-Time Compute for LLaMA-based Speech Synthesis (Comming soon)
Train from Scratch: If you want to train the model from scratch, use the LLaSA Training Repository.
Scale for Test-Time Computation: If you want to experiment with scaling for test-time computation, use the LLaSA Testing Repository.
Model Information
Our model, Llasa, is a text-to-speech (TTS) system that extends the text-based LLaMA (1B,3B, and 8B) language model by incorporating speech tokens from the XCodec2 codebook, which contains 65,536 tokens. We trained Llasa on a dataset comprising 250,000 hours of Chinese-English speech data. The model is capable of generating speech either solely from input text or by utilizing a given speech prompt.
How to use
Install XCodec2. (Please use new version of xcodec2==0.1.3)
conda create -n xcodec2 python=3.9
conda activate xcodec2
pip install xcodec2==0.1.3
1. Speech synthesis solely from input text
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf
llasa_3b ='HKUST-Audio/Llasa-3B'
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
model.eval()
model.to('cuda')
from xcodec2.modeling_xcodec2 import XCodec2Model
model_path = "HKUST-Audio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
input_text = 'Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me.'
# input_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
#TTS start!
with torch.no_grad():
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1, # Adjusts the diversity of generated content
temperature=0.8, # Controls randomness in output
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]:-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
2. Speech synthesis utilizing a given speech prompt
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf
llasa_3b ='HKUST-Audio/Llasa-3B'
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
model.eval()
model.to('cuda')
from xcodec2.modeling_xcodec2 import XCodec2Model
model_path = "HKUST-Audio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
# only 16khz speech support!
prompt_wav, sr = sf.read("太乙真人.wav") # you can find wav in Files
#prompt_wav, sr = sf.read("Anna.wav") # English prompt
prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
prompt_text ="对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"
#promt_text = "A chance to leave him alone, but... No. She just wanted to see him again. Anna, you don't know how it feels to lose a sister. Anna, I'm sorry, but your father asked me not to tell you anything."
target_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
#target_text = "Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me."
input_text = prompt_text + target_text
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
#TTS start!
with torch.no_grad():
# Encode the prompt wav
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
print("Prompt Vq Code Shape:", vq_code_prompt.shape )
vq_code_prompt = vq_code_prompt[0,0,:]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text and the speech prefix
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1,
temperature=0.8,
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
# if only need the generated part
# gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
Disclaimer
We do not hold any responsibility for any illegal usage of the codebase. Please refer to your local laws about DMCA and other related laws.
- Downloads last month
- 205
Model tree for HKUST-Audio/Llasa-3B
Base model
meta-llama/Llama-3.2-3B-Instruct