---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:69231
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/LaBSE
widget:
- source_sentence: энанкавраторавык
sentences:
- Посмотрим, услышишь ли меня, когда буду разговаривать с тобой?
- Они осмотрели рулевое весло.
- распутывать
- source_sentence: Амамысӄа вээм и'рык мытылвавын
sentences:
- Дубовый остол
- Из-за глубины реки мы не смогли её перейти
- Вчера целый день была изморось
- source_sentence: Ӈэвъэнйыръыт эръывтычгэпыгъат
sentences:
- Смерть
- Женщины надели ритуальные камлейки
- то, что огибают
- source_sentence: Гымнан тычимгъун тортыкэчьынтыватгыргын
sentences:
- открытое море
- твёрдое место на земле
- Я придумал новый способ установки приманки
- source_sentence: ӈэнчьачакыгэт, ӈэнчьачакэттомгын
sentences:
- Младшая сестра
- наконечник гарпуна
- Рассказывать неспеша
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/LaBSE
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'ӈэнчьачакыгэт, ӈэнчьачакэттомгын',
'Младшая сестра',
'наконечник гарпуна',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 69,231 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
- min: 3 tokens
- mean: 9.36 tokens
- max: 93 tokens
| - min: 3 tokens
- mean: 10.03 tokens
- max: 97 tokens
| - min: 1.0
- mean: 1.0
- max: 1.0
|
* Samples:
| sentence_0 | sentence_1 | label |
|:----------------------------------------|:--------------------------------------------------|:-----------------|
| ныкынмаԓьав
| стремящийся быть вместе, неразлучный
| 1.0
|
| Овчелгымоллымол
| Темнокрасная кровь
| 1.0
|
| Ӈаанракэн ыпычьын кытыԓьын
| Того дома основа крепкая
| 1.0
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `num_train_epochs`: 1
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0116 | 100 | - |
| 0.0231 | 200 | - |
| 0.0347 | 300 | - |
| 0.0462 | 400 | - |
| 0.0578 | 500 | 1.6601 |
| 0.0693 | 600 | - |
| 0.0809 | 700 | - |
| 0.0924 | 800 | - |
| 0.1040 | 900 | - |
| 0.1156 | 1000 | 1.1117 |
| 0.1271 | 1100 | - |
| 0.1387 | 1200 | - |
| 0.1502 | 1300 | - |
| 0.1618 | 1400 | - |
| 0.1733 | 1500 | 1.0037 |
| 0.1849 | 1600 | - |
| 0.1964 | 1700 | - |
| 0.2080 | 1800 | - |
| 0.2196 | 1900 | - |
| 0.2311 | 2000 | 0.9463 |
| 0.2427 | 2100 | - |
| 0.2542 | 2200 | - |
| 0.2658 | 2300 | - |
| 0.2773 | 2400 | - |
| 0.2889 | 2500 | 0.9152 |
| 0.3004 | 2600 | - |
| 0.3120 | 2700 | - |
| 0.3235 | 2800 | - |
| 0.3351 | 2900 | - |
| 0.3467 | 3000 | 0.8957 |
| 0.3582 | 3100 | - |
| 0.3698 | 3200 | - |
| 0.3813 | 3300 | - |
| 0.3929 | 3400 | - |
| 0.4044 | 3500 | 0.8696 |
| 0.4160 | 3600 | - |
| 0.4275 | 3700 | - |
| 0.4391 | 3800 | - |
| 0.4507 | 3900 | - |
| 0.4622 | 4000 | 0.8815 |
| 0.4738 | 4100 | - |
| 0.4853 | 4200 | - |
| 0.4969 | 4300 | - |
| 0.5084 | 4400 | - |
| 0.5200 | 4500 | 0.8265 |
| 0.5315 | 4600 | - |
| 0.5431 | 4700 | - |
| 0.5547 | 4800 | - |
| 0.5662 | 4900 | - |
| 0.5778 | 5000 | 0.8057 |
| 0.5893 | 5100 | - |
| 0.6009 | 5200 | - |
| 0.6124 | 5300 | - |
| 0.6240 | 5400 | - |
| 0.6355 | 5500 | 0.7754 |
| 0.6471 | 5600 | - |
| 0.6587 | 5700 | - |
| 0.6702 | 5800 | - |
| 0.6818 | 5900 | - |
| 0.6933 | 6000 | 0.8078 |
| 0.7049 | 6100 | - |
| 0.7164 | 6200 | - |
| 0.7280 | 6300 | - |
| 0.7395 | 6400 | - |
| 0.7511 | 6500 | 0.7371 |
| 0.7627 | 6600 | - |
| 0.7742 | 6700 | - |
| 0.7858 | 6800 | - |
| 0.7973 | 6900 | - |
| 0.8089 | 7000 | 0.7199 |
| 0.8204 | 7100 | - |
| 0.8320 | 7200 | - |
| 0.8435 | 7300 | - |
| 0.8551 | 7400 | - |
| 0.8667 | 7500 | 0.7494 |
| 0.8782 | 7600 | - |
| 0.8898 | 7700 | - |
| 0.9013 | 7800 | - |
| 0.9129 | 7900 | - |
| 0.9244 | 8000 | 0.7481 |
| 0.9360 | 8100 | - |
| 0.9475 | 8200 | - |
| 0.9591 | 8300 | - |
| 0.9706 | 8400 | - |
| 0.9822 | 8500 | 0.7768 |
| 0.9938 | 8600 | - |
| 1.0 | 8654 | - |
### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```