--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:69231 - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/LaBSE widget: - source_sentence: энанкавраторавык sentences: - Посмотрим, услышишь ли меня, когда буду разговаривать с тобой? - Они осмотрели рулевое весло. - распутывать - source_sentence: Амамысӄа вээм и'рык мытылвавын sentences: - Дубовый остол - Из-за глубины реки мы не смогли её перейти - Вчера целый день была изморось - source_sentence: Ӈэвъэнйыръыт эръывтычгэпыгъат sentences: - Смерть - Женщины надели ритуальные камлейки - то, что огибают - source_sentence: Гымнан тычимгъун тортыкэчьынтыватгыргын sentences: - открытое море - твёрдое место на земле - Я придумал новый способ установки приманки - source_sentence: ӈэнчьачакыгэт, ӈэнчьачакэттомгын sentences: - Младшая сестра - наконечник гарпуна - Рассказывать неспеша pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on sentence-transformers/LaBSE This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'ӈэнчьачакыгэт, ӈэнчьачакэттомгын', 'Младшая сестра', 'наконечник гарпуна', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 69,231 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------|:--------------------------------------------------|:-----------------| | ныкынмаԓьав | стремящийся быть вместе, неразлучный | 1.0 | | Овчелгымоллымол | Темнокрасная кровь | 1.0 | | Ӈаанракэн ыпычьын кытыԓьын | Того дома основа крепкая | 1.0 | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `num_train_epochs`: 1 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0116 | 100 | - | | 0.0231 | 200 | - | | 0.0347 | 300 | - | | 0.0462 | 400 | - | | 0.0578 | 500 | 1.6601 | | 0.0693 | 600 | - | | 0.0809 | 700 | - | | 0.0924 | 800 | - | | 0.1040 | 900 | - | | 0.1156 | 1000 | 1.1117 | | 0.1271 | 1100 | - | | 0.1387 | 1200 | - | | 0.1502 | 1300 | - | | 0.1618 | 1400 | - | | 0.1733 | 1500 | 1.0037 | | 0.1849 | 1600 | - | | 0.1964 | 1700 | - | | 0.2080 | 1800 | - | | 0.2196 | 1900 | - | | 0.2311 | 2000 | 0.9463 | | 0.2427 | 2100 | - | | 0.2542 | 2200 | - | | 0.2658 | 2300 | - | | 0.2773 | 2400 | - | | 0.2889 | 2500 | 0.9152 | | 0.3004 | 2600 | - | | 0.3120 | 2700 | - | | 0.3235 | 2800 | - | | 0.3351 | 2900 | - | | 0.3467 | 3000 | 0.8957 | | 0.3582 | 3100 | - | | 0.3698 | 3200 | - | | 0.3813 | 3300 | - | | 0.3929 | 3400 | - | | 0.4044 | 3500 | 0.8696 | | 0.4160 | 3600 | - | | 0.4275 | 3700 | - | | 0.4391 | 3800 | - | | 0.4507 | 3900 | - | | 0.4622 | 4000 | 0.8815 | | 0.4738 | 4100 | - | | 0.4853 | 4200 | - | | 0.4969 | 4300 | - | | 0.5084 | 4400 | - | | 0.5200 | 4500 | 0.8265 | | 0.5315 | 4600 | - | | 0.5431 | 4700 | - | | 0.5547 | 4800 | - | | 0.5662 | 4900 | - | | 0.5778 | 5000 | 0.8057 | | 0.5893 | 5100 | - | | 0.6009 | 5200 | - | | 0.6124 | 5300 | - | | 0.6240 | 5400 | - | | 0.6355 | 5500 | 0.7754 | | 0.6471 | 5600 | - | | 0.6587 | 5700 | - | | 0.6702 | 5800 | - | | 0.6818 | 5900 | - | | 0.6933 | 6000 | 0.8078 | | 0.7049 | 6100 | - | | 0.7164 | 6200 | - | | 0.7280 | 6300 | - | | 0.7395 | 6400 | - | | 0.7511 | 6500 | 0.7371 | | 0.7627 | 6600 | - | | 0.7742 | 6700 | - | | 0.7858 | 6800 | - | | 0.7973 | 6900 | - | | 0.8089 | 7000 | 0.7199 | | 0.8204 | 7100 | - | | 0.8320 | 7200 | - | | 0.8435 | 7300 | - | | 0.8551 | 7400 | - | | 0.8667 | 7500 | 0.7494 | | 0.8782 | 7600 | - | | 0.8898 | 7700 | - | | 0.9013 | 7800 | - | | 0.9129 | 7900 | - | | 0.9244 | 8000 | 0.7481 | | 0.9360 | 8100 | - | | 0.9475 | 8200 | - | | 0.9591 | 8300 | - | | 0.9706 | 8400 | - | | 0.9822 | 8500 | 0.7768 | | 0.9938 | 8600 | - | | 1.0 | 8654 | - | ### Framework Versions - Python: 3.11.12 - Sentence Transformers: 4.1.0 - Transformers: 4.52.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.7.0 - Datasets: 2.14.4 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```