--- library_name: transformers tags: - time series - multimodal - TimeSeries-Text-to-Text license: apache-2.0 --- # Mists-7B-v0.1-not-trained Mists(**Mis**tral **T**ime **S**eries) model is a multimodal model that combines language and time series model. This model is based on the following models: - [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) - [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large) This is an experimental model. It has some limitations and is not suitable for use at this time. ## How to load model ```Python !pip install git+https://github.com/Hajime-Y/moment.git !pip install -U transformers !git clone https://github.com/Hajime-Y/Mists.git ``` ```Python import torch from Mists.configuration_mists import MistsConfig from Mists.modeling_mists import MistsForConditionalGeneration from Mists.processing_mists import MistsProcessor model_id = "HachiML/Mists-7B-v0.1-not-trained" model = MistsForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ).to("cuda") processor = MistsProcessor.from_pretrained(model_id) ``` ```Python import pandas as pd hist_ndaq_512 = pd.DataFrame("nasdaq_price_history.csv") time_series_data = torch.tensor(hist_ndaq_512[["Open", "High", "Low", "Close", "Volume"]].values, dtype=torch.float) time_series_data = time_series_data.t().unsqueeze(0) prompt = "USER: \nWhat are the features of this data?\nASSISTANT:" inputs = processor(prompt, time_series_data, return_tensors='pt').to(torch.float32) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0], skip_special_tokens=True)) ```