Upload modeling_bit_llama.py
Browse files- modeling_bit_llama.py +77 -0
modeling_bit_llama.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
from transformers.models.llama.modeling_llama import (
|
| 3 |
+
LlamaConfig,
|
| 4 |
+
LlamaModel,
|
| 5 |
+
LlamaForCausalLM,
|
| 6 |
+
LlamaAttention,
|
| 7 |
+
LlamaFlashAttention2,
|
| 8 |
+
LlamaSdpaAttention,
|
| 9 |
+
LlamaMLP,
|
| 10 |
+
LlamaDecoderLayer,
|
| 11 |
+
)
|
| 12 |
+
from mybitnet.bitnet import BitLinear
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
class BitLlamaConfig(LlamaConfig):
|
| 16 |
+
model_type = "bit_llama"
|
| 17 |
+
|
| 18 |
+
def __init__(self, bits=8, **kwargs):
|
| 19 |
+
super().__init__(**kwargs)
|
| 20 |
+
self.bits = bits
|
| 21 |
+
|
| 22 |
+
class BitLlamaMLP(LlamaMLP):
|
| 23 |
+
def __init__(self, config):
|
| 24 |
+
super().__init__(config)
|
| 25 |
+
self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=True)
|
| 26 |
+
self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=True)
|
| 27 |
+
self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=False)
|
| 28 |
+
|
| 29 |
+
class BitLlamaAttention(LlamaAttention):
|
| 30 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
|
| 31 |
+
super().__init__(config)
|
| 32 |
+
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 33 |
+
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 34 |
+
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 35 |
+
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
|
| 36 |
+
|
| 37 |
+
class BitLlamaFlashAttention2(LlamaFlashAttention2):
|
| 38 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
|
| 39 |
+
super().__init__(config, layer_idx)
|
| 40 |
+
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 41 |
+
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 42 |
+
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 43 |
+
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
|
| 44 |
+
|
| 45 |
+
class BitLlamaSdpaAttention(LlamaSdpaAttention):
|
| 46 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
|
| 47 |
+
super().__init__(config, layer_idx)
|
| 48 |
+
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 49 |
+
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 50 |
+
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
|
| 51 |
+
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
|
| 52 |
+
|
| 53 |
+
BITLLAMA_ATTENTION_CLASSES = {
|
| 54 |
+
"eager": BitLlamaAttention,
|
| 55 |
+
"flash_attention_2": BitLlamaFlashAttention2,
|
| 56 |
+
"sdpa": BitLlamaSdpaAttention,
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
class BitLlamaDecoderLayer(LlamaDecoderLayer):
|
| 60 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: int):
|
| 61 |
+
super().__init__(config, layer_idx)
|
| 62 |
+
self.self_attn = BITLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 63 |
+
self.mlp = BitLlamaMLP(config)
|
| 64 |
+
|
| 65 |
+
class BitLlamaModel(LlamaModel):
|
| 66 |
+
def __init__(self, config: BitLlamaConfig):
|
| 67 |
+
super().__init__(config)
|
| 68 |
+
self.layers = nn.ModuleList(
|
| 69 |
+
[BitLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
class BitLlamaForCausalLM(LlamaForCausalLM):
|
| 73 |
+
def __init__(self, config: BitLlamaConfig):
|
| 74 |
+
super().__init__(config)
|
| 75 |
+
self.model = BitLlamaModel(config)
|
| 76 |
+
self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False, bits=config.bits, flg_before_linear=True)
|
| 77 |
+
|