Upload gradio_demo.py with huggingface_hub
Browse files- gradio_demo.py +138 -0
gradio_demo.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
from loguru import logger
|
9 |
+
from transformers import VJEPA2ForVideoClassification, AutoVideoProcessor
|
10 |
+
|
11 |
+
# Config
|
12 |
+
CHECKPOINT = "HaithemH/vjepa2-vitl-fpc16-256-ssv2-66K-220cat"
|
13 |
+
TORCH_DTYPE = torch.float16
|
14 |
+
TORCH_DEVICE = "cuda:4" # Change if needed
|
15 |
+
UPDATE_EVERY_N_FRAMES = 16
|
16 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
+
|
18 |
+
# Load model & processor
|
19 |
+
model = VJEPA2ForVideoClassification.from_pretrained(CHECKPOINT, torch_dtype=torch.bfloat16)
|
20 |
+
model = model.to(TORCH_DEVICE)
|
21 |
+
video_processor = AutoVideoProcessor.from_pretrained(CHECKPOINT)
|
22 |
+
frames_per_clip = model.config.frames_per_clip
|
23 |
+
|
24 |
+
|
25 |
+
def add_text_on_image(image, text):
|
26 |
+
image[:70] = 0
|
27 |
+
line_spacing = 10
|
28 |
+
top_margin = 20
|
29 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
30 |
+
font_scale = 0.5
|
31 |
+
thickness = 1
|
32 |
+
color = (255, 255, 255)
|
33 |
+
words = text.split()
|
34 |
+
lines = []
|
35 |
+
current_line = ""
|
36 |
+
img_width = image.shape[1]
|
37 |
+
for word in words:
|
38 |
+
test_line = current_line + (" " if current_line else "") + word
|
39 |
+
(test_width, _), _ = cv2.getTextSize(test_line, font, font_scale, thickness)
|
40 |
+
if test_width > img_width - 20:
|
41 |
+
lines.append(current_line)
|
42 |
+
current_line = word
|
43 |
+
else:
|
44 |
+
current_line = test_line
|
45 |
+
if current_line:
|
46 |
+
lines.append(current_line)
|
47 |
+
y = top_margin
|
48 |
+
for line in lines:
|
49 |
+
(line_width, line_height), _ = cv2.getTextSize(line, font, font_scale, thickness)
|
50 |
+
x = (img_width - line_width) // 2
|
51 |
+
cv2.putText(image, line, (x, y + line_height), font, font_scale, color, thickness, cv2.LINE_AA)
|
52 |
+
y += line_height + line_spacing
|
53 |
+
return image
|
54 |
+
|
55 |
+
|
56 |
+
class RunningFramesCache:
|
57 |
+
def __init__(self, max_frames=16):
|
58 |
+
self.max_frames = max_frames
|
59 |
+
self._frames = []
|
60 |
+
self.counter = 0
|
61 |
+
|
62 |
+
def add_frame(self, frame):
|
63 |
+
self.counter += 1
|
64 |
+
self._frames.append(frame)
|
65 |
+
if len(self._frames) > self.max_frames:
|
66 |
+
self._frames.pop(0)
|
67 |
+
|
68 |
+
def get_last_n_frames(self, n):
|
69 |
+
return self._frames[-n:]
|
70 |
+
|
71 |
+
def __len__(self):
|
72 |
+
return len(self._frames)
|
73 |
+
|
74 |
+
|
75 |
+
class RunningResult:
|
76 |
+
def __init__(self, max_predictions=4):
|
77 |
+
self.predictions = []
|
78 |
+
self.max_predictions = max_predictions
|
79 |
+
|
80 |
+
def add_prediction(self, prediction):
|
81 |
+
current_time = time.strftime("%H:%M:%S", time.gmtime(time.time()))
|
82 |
+
self.predictions.append((current_time, prediction))
|
83 |
+
if len(self.predictions) > self.max_predictions:
|
84 |
+
self.predictions.pop(0)
|
85 |
+
|
86 |
+
def get_formatted(self):
|
87 |
+
if not self.predictions:
|
88 |
+
return "Starting..."
|
89 |
+
current, *past = self.predictions[::-1]
|
90 |
+
text = f">>> {current[1]}\n\n" + "\n".join(
|
91 |
+
f"[{time_str}] {pred}" for time_str, pred in past
|
92 |
+
)
|
93 |
+
return text
|
94 |
+
|
95 |
+
def get_last(self):
|
96 |
+
return self.predictions[-1][1] if self.predictions else "Starting..."
|
97 |
+
|
98 |
+
|
99 |
+
# Shared state
|
100 |
+
frames_cache = RunningFramesCache(max_frames=frames_per_clip)
|
101 |
+
results_cache = RunningResult()
|
102 |
+
|
103 |
+
|
104 |
+
def classify_frame(image):
|
105 |
+
image = cv2.flip(image, 1) # mirror webcam
|
106 |
+
frames_cache.add_frame(image)
|
107 |
+
|
108 |
+
if frames_cache.counter % UPDATE_EVERY_N_FRAMES == 0 and len(frames_cache) >= frames_per_clip:
|
109 |
+
frames = frames_cache.get_last_n_frames(frames_per_clip)
|
110 |
+
frames = np.array(frames)
|
111 |
+
inputs = video_processor(frames, device=TORCH_DEVICE, return_tensors="pt")
|
112 |
+
inputs = inputs.to(dtype=TORCH_DTYPE)
|
113 |
+
with torch.no_grad():
|
114 |
+
logits = model(**inputs).logits
|
115 |
+
top_idx = logits.argmax(dim=-1).item()
|
116 |
+
class_name = model.config.id2label[top_idx]
|
117 |
+
logger.info(f"Predicted: {class_name}")
|
118 |
+
results_cache.add_prediction(class_name)
|
119 |
+
|
120 |
+
annotated_image = add_text_on_image(image.copy(), results_cache.get_last())
|
121 |
+
return annotated_image, results_cache.get_formatted()
|
122 |
+
|
123 |
+
|
124 |
+
# Gradio UI
|
125 |
+
demo = gr.Interface(
|
126 |
+
fn=classify_frame,
|
127 |
+
inputs=gr.Image(sources=["webcam"], streaming=True),
|
128 |
+
outputs=[
|
129 |
+
gr.Image(label="Live Prediction", type="numpy"),
|
130 |
+
gr.TextArea(label="Recent Predictions", lines=10),
|
131 |
+
],
|
132 |
+
live=True,
|
133 |
+
title="V-JEPA 2: Streaming Video Action Recognition - SSV2",
|
134 |
+
description="This demo showcases a specialized version of V-JEPA 2, fine-tuned for real-time video action recognition!",
|
135 |
+
)
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
demo.launch(share=True)
|