--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: speech-accent-detection results: [] datasets: - CSTR-Edinburgh/vctk --- # speech-accent-detection This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the VCTK dataset. It achieves the following results on the evaluation set: - Loss: 0.0441 - Accuracy: 0.9955 ## Model description I used the wav2vec2 model's weights and fine-tune over my dataset. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8005 | 1.0 | 2205 | 0.6526 | 0.8270 | | 0.0508 | 2.0 | 4410 | 0.3466 | 0.9374 | | 0.3054 | 3.0 | 6615 | 0.2946 | 0.9524 | | 0.0882 | 4.0 | 8820 | 0.1832 | 0.9737 | | 0.0006 | 5.0 | 11025 | 0.1539 | 0.9757 | | 0.0003 | 6.0 | 13230 | 0.0677 | 0.9896 | | 0.3011 | 7.0 | 15435 | 0.1219 | 0.9859 | | 0.0001 | 8.0 | 17640 | 0.0695 | 0.9916 | | 0.0001 | 9.0 | 19845 | 0.0397 | 0.9955 | | 0.0 | 10.0 | 22050 | 0.0441 | 0.9955 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0