import os import argparse from datetime import timedelta import librosa import torch from faster_whisper import WhisperModel def seconds_to_timestamp(seconds): """Convert seconds to VTT timestamp format (HH:MM:SS.mmm)""" t = timedelta(seconds=seconds) return str(t)[:-3].rjust(11, '0').replace('.', ',') def write_vtt(segments, output_path): with open(output_path, 'w', encoding='utf-8') as f: f.write("WEBVTT\n\n") for segment in segments: start_ts = seconds_to_timestamp(segment.start) end_ts = seconds_to_timestamp(segment.end) f.write(f"{start_ts} --> {end_ts}\n{segment.text}\n\n") def transcribe_audio(model, audio_path, word_timestamps=True, vad_filter=True): print(f"\nProcessing {audio_path}...") with torch.no_grad(): audio_data, sr = librosa.load(audio_path, sr=None) audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=16000) segments, _ = model.transcribe( audio_data, language='ar', word_timestamps=word_timestamps, vad_filter=vad_filter ) for segment in segments: if segment.words: for word in segment.words: print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word)) vtt_path = os.path.splitext(audio_path)[0] + ".vtt" write_vtt(segments, vtt_path) print(f"VTT written to: {vtt_path}") def main(): parser = argparse.ArgumentParser(description="Transcribe audio files using Faster-Whisper.") parser.add_argument("--model_path", required=True, help="Path to the model directory or file") parser.add_argument("--audio_dir", required=True, help="Directory containing audio files (wav/mp3)") parser.add_argument("--word_timestamps", type=bool, default=True, help="Enable word timestamps (default: True)") parser.add_argument("--vad_filter", type=bool, default=True, help="Enable VAD filtering (default: True)") args = parser.parse_args() model = WhisperModel(args.model_path) for file in os.listdir(args.audio_dir): if file.endswith(".wav") or file.endswith(".mp3"): audio_path = os.path.join(args.audio_dir, file) transcribe_audio( model, audio_path, language="ar", beam_size=5, task="transcribe", word_timestamps=args.word_timestamps, vad_filter=args.vad_filter, vad_parameters=dict(min_silence_duration_ms=2000) ) if __name__ == "__main__": main()