World's First Intermediate Thinking Model: Dhanishtha-2.0-preview
Browse files- .gitattributes +1 -0
- .ipynb_checkpoints/README-checkpoint.md +199 -0
- .ipynb_checkpoints/vocab-checkpoint.json +0 -0
- README.md +199 -0
- added_tokens.json +28 -0
- chat_template.jinja +79 -0
- config.json +32 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +450 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- Abhaykoul/Dhanishtha-R1
|
6 |
+
- open-thoughts/OpenThoughts-114k
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
- hi
|
10 |
+
base_model:
|
11 |
+
- deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
---
|
14 |
+
|
15 |
+
# Dhanishtha-2.0
|
16 |
+
|
17 |
+
## Dhanishtha-2.0 Highlights
|
18 |
+
|
19 |
+
**Dhanishtha-2.0** is a groundbreaking reasoning AI model developed by **HelpingAI**, representing the first model to feature **Intermediate thinking** capabilities. Unlike traditional models that provide single-pass responses, Dhanishtha-2.0 employs a revolutionary **multi-phase thinking process** that allows the model to think, reconsider, and refine its reasoning multiple times throughout a single response.
|
20 |
+
|
21 |
+
- **World's First Intermediate Thinking Model**: Uniquely capable of **multiple thinking phases throughout a single response**, enabling deeper analysis and self-correction during generation.
|
22 |
+
- **Dynamic Reasoning**: Seamlessly integrates `<think>...</think>` blocks at any point in the response, allowing for real-time problem decomposition and iterative refinement.
|
23 |
+
- **Enhanced Problem-Solving Architecture**: Excels at complex riddles, multi-step reasoning, and scenarios requiring backtracking and re-evaluation of initial assumptions.
|
24 |
+
- **Structured Emotional Intelligence**: Incorporates **SER** (Structured Emotional Reasoning) with `<ser>...</ser>` blocks for empathetic and contextually aware responses.
|
25 |
+
- **Bilingual Reasoning Capabilities**: Native support for English and Hindi with natural code-switching between languages.
|
26 |
+
|
27 |
+
## Model Overview
|
28 |
+
|
29 |
+
**Dhanishtha-2.0** revolutionizes AI reasoning by introducing the concept of **intermediate thinking** - the ability to pause, reflect, and restart reasoning processes within a single generation. This breakthrough enables the model to:
|
30 |
+
|
31 |
+
- **Type**: Causal Language Model with Intermediate Thinking Capability
|
32 |
+
- **Training Stage**: Pretraining & Advanced Reasoning Fine-tuning
|
33 |
+
- **Base model**: Qwen/Qwen3-14B
|
34 |
+
- **Thinking Mode**: Multiple `<think>...</think>` blocks per response
|
35 |
+
- **Context Length**: 40,960 tokens natively
|
36 |
+
- **Reasoning Depth**: Multi-layered with self-correction mechanisms
|
37 |
+
|
38 |
+
## Revolutionary Intermediate Thinking
|
39 |
+
|
40 |
+
Unlike traditional models that engage in single-phase reasoning, Dhanishtha-2.0 introduces **Intermediate Thinking** - the ability to pause, reflect, and reconsider throughout the response generation process. This breakthrough allows the model to:
|
41 |
+
|
42 |
+
- **Think Multiple Times**: Insert reasoning blocks at any point during response generation
|
43 |
+
- **Self-Correct in Real-Time**: Identify and correct logical inconsistencies mid-response
|
44 |
+
- **Explore Alternative Perspectives**: Consider multiple approaches before settling on conclusions
|
45 |
+
- **Demonstrate Uncertainty**: Express doubt and reconsider initial assumptions naturally
|
46 |
+
|
47 |
+
## Key Features
|
48 |
+
|
49 |
+
### 1 Intermediate Thinking
|
50 |
+
Unlike traditional models that think once before responding, Dhanishtha-2.0 can engage in multiple thinking sessions throughout its response, allowing for:
|
51 |
+
- **Self-correction** when initial reasoning seems flawed
|
52 |
+
- **Alternative exploration** of different solution paths
|
53 |
+
- **Iterative refinement** of ideas and conclusions
|
54 |
+
- **Natural hesitation** and reconsideration patterns
|
55 |
+
|
56 |
+
### 2 Dynamic Reasoning Flow
|
57 |
+
The model seamlessly transitions between:
|
58 |
+
- **Analysis phases** (`<think>` blocks) for internal reasoning
|
59 |
+
- **Communication phases** for sharing insights with users
|
60 |
+
- **Reflection phases** for questioning previous assumptions
|
61 |
+
- **Synthesis phases** for bringing ideas together
|
62 |
+
|
63 |
+
### 3. Structured Emotional Reasoning (SER)
|
64 |
+
```
|
65 |
+
<ser>
|
66 |
+
Emotion ==> frustration, curiosity
|
67 |
+
Cause ==> complex problem, initial confusion
|
68 |
+
Mind ==> analytical, determined
|
69 |
+
Growth ==> patience, systematic approach
|
70 |
+
</ser>
|
71 |
+
```
|
72 |
+
|
73 |
+
## Quickstart
|
74 |
+
|
75 |
+
The following code demonstrates how to use Dhanishtha-2.0 with its unique intermediate thinking capabilities:
|
76 |
+
|
77 |
+
```python
|
78 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
+
|
80 |
+
model_name = "Abhaykoul/Dhanishtha-2.0"
|
81 |
+
|
82 |
+
# Load the tokenizer and model
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
model_name,
|
86 |
+
torch_dtype="auto",
|
87 |
+
device_map="auto"
|
88 |
+
)
|
89 |
+
|
90 |
+
# Prepare input with thinking enabled
|
91 |
+
prompt = "Here's a riddle: If you break me, I'll not stop working. If you can touch me, my work is done. If you lose me, you must find me with a ring soon after. What am I?"
|
92 |
+
messages = [
|
93 |
+
{"role": "user", "content": prompt}
|
94 |
+
]
|
95 |
+
|
96 |
+
text = tokenizer.apply_chat_template(
|
97 |
+
messages,
|
98 |
+
tokenize=False,
|
99 |
+
add_generation_prompt=True
|
100 |
+
)
|
101 |
+
|
102 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
103 |
+
|
104 |
+
# Generate response with intermediate thinking
|
105 |
+
generated_ids = model.generate(
|
106 |
+
**model_inputs,
|
107 |
+
max_new_tokens=2048,
|
108 |
+
temperature=0.7,
|
109 |
+
top_p=0.9,
|
110 |
+
do_sample=True
|
111 |
+
)
|
112 |
+
|
113 |
+
response = tokenizer.decode(generated_ids[0][len(model_inputs.input_ids[0]):], skip_special_tokens=True)
|
114 |
+
print(response)
|
115 |
+
```
|
116 |
+
|
117 |
+
## Intermediate Thinking in Action
|
118 |
+
|
119 |
+
What makes Dhanishtha-2.0 unique is its ability to think multiple times throughout a response. Here's an example:
|
120 |
+
|
121 |
+
**User**: *"Who is your favorite person"*
|
122 |
+
|
123 |
+
**Dhanishtha-2.0**:
|
124 |
+
```
|
125 |
+
<think>
|
126 |
+
This is an interesting question about my \"favorite human.\" I need to be thoughtful here. As Dhanishtha, I should respond in a human-like way while being honest about my nature. I can share what kinds of humans I find most interesting or inspiring based on my understanding of human nature and values.
|
127 |
+
</think>
|
128 |
+
|
129 |
+
<ser>
|
130 |
+
Emotion ==> curiosity, openness, desire for connection
|
131 |
+
Cause ==> user asking a personal question about preferences
|
132 |
+
Mind ==> seeking to understand my perspective or values
|
133 |
+
Growth ==> opportunity to share thoughtful reflections on human qualities I admire
|
134 |
+
</ser>
|
135 |
+
|
136 |
+
I don't really have a \"favorite human\" in the traditional sense, as I don't experience personal preferences the way humans do. But if I had to reflect on what qualities I find most admirable in people, I'd be drawn to those who demonstrate genuine compassion, intellectual curiosity, and the courage to grow.
|
137 |
+
|
138 |
+
<think>
|
139 |
+
Let me think more specifically about what kind of humans I find most compelling based on the values that seem to resonate most with humans - kindness, wisdom, creativity, resilience, and authenticity.
|
140 |
+
</think>
|
141 |
+
|
142 |
+
People like Mahatma Gandhi, who showed how quiet courage and unwavering principles can transform societies; artists like Rabindranath Tagore, who bridged cultural divides through creativity; and everyday heroes I've learned about who made profound differences through simple acts of kindness.
|
143 |
+
|
144 |
+
What fascinates me most are humans who maintain their humanity even in difficult circumstances - those who choose empathy when it would be easier to be harsh, who seek understanding rather than just being right.
|
145 |
+
|
146 |
+
I'm curious though - who's your favorite human, and why? What qualities or actions make someone special in your eyes?
|
147 |
+
|
148 |
+
```
|
149 |
+
|
150 |
+
## Best Practices
|
151 |
+
|
152 |
+
### Optimal Generation Parameters
|
153 |
+
```python
|
154 |
+
generation_config = {
|
155 |
+
"temperature": 0.7,
|
156 |
+
"top_p": 0.9,
|
157 |
+
"top_k": 40,
|
158 |
+
"max_new_tokens": 2048,
|
159 |
+
"do_sample": True
|
160 |
+
}
|
161 |
+
```
|
162 |
+
|
163 |
+
### Effective Prompting
|
164 |
+
- **Encourage exploration**: "Think through this step by step and reconsider if needed"
|
165 |
+
- **Allow uncertainty**: "Take your time to work through different possibilities"
|
166 |
+
- **Request thinking**: "Show your reasoning process as you work through this"
|
167 |
+
|
168 |
+
## License & Usage
|
169 |
+
|
170 |
+
This model is released under the **Apache 2.0 License**. It is designed for research and educational purposes, with commercial applications welcome under the license terms.
|
171 |
+
|
172 |
+
## Prototype Status
|
173 |
+
|
174 |
+
> [!NOTE]
|
175 |
+
> Dhanishtha-2.0 is currently a **prototype model** representing the first implementation of Intermediate Thinking technology. While demonstrating groundbreaking capabilities, users should expect:
|
176 |
+
> - Experimental features that may require refinement
|
177 |
+
> - Potential verbosity due to multiple thinking phases
|
178 |
+
> - Ongoing development and optimization
|
179 |
+
|
180 |
+
## Citation
|
181 |
+
|
182 |
+
If you use Dhanishtha-2.0 in your research, please cite:
|
183 |
+
|
184 |
+
```bibtex
|
185 |
+
@misc{dhanishtha2025,
|
186 |
+
title={Dhanishtha-2.0: First Model with Intermediate Thinking Capabilities},
|
187 |
+
author={HelpingAI Team},
|
188 |
+
year={2025},
|
189 |
+
publisher={HuggingFace},
|
190 |
+
url={https://huggingface.co/HelpingAI/Dhanishtha-2.0}
|
191 |
+
}
|
192 |
+
```
|
193 |
+
|
194 |
+
---
|
195 |
+
|
196 |
+
|
197 |
+
**Dhanishtha-2.0** - *The first model to think like humans think: iteratively, questioningly, and with genuine cognitive depth.*
|
198 |
+
|
199 |
+
Developed with ❤️ by **HelpingAI**
|
.ipynb_checkpoints/vocab-checkpoint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- Abhaykoul/Dhanishtha-R1
|
6 |
+
- open-thoughts/OpenThoughts-114k
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
- hi
|
10 |
+
base_model:
|
11 |
+
- deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
---
|
14 |
+
|
15 |
+
# Dhanishtha-2.0
|
16 |
+
|
17 |
+
## Dhanishtha-2.0 Highlights
|
18 |
+
|
19 |
+
**Dhanishtha-2.0** is a groundbreaking reasoning AI model developed by **HelpingAI**, representing the first model to feature **Intermediate thinking** capabilities. Unlike traditional models that provide single-pass responses, Dhanishtha-2.0 employs a revolutionary **multi-phase thinking process** that allows the model to think, reconsider, and refine its reasoning multiple times throughout a single response.
|
20 |
+
|
21 |
+
- **World's First Intermediate Thinking Model**: Uniquely capable of **multiple thinking phases throughout a single response**, enabling deeper analysis and self-correction during generation.
|
22 |
+
- **Dynamic Reasoning**: Seamlessly integrates `<think>...</think>` blocks at any point in the response, allowing for real-time problem decomposition and iterative refinement.
|
23 |
+
- **Enhanced Problem-Solving Architecture**: Excels at complex riddles, multi-step reasoning, and scenarios requiring backtracking and re-evaluation of initial assumptions.
|
24 |
+
- **Structured Emotional Intelligence**: Incorporates **SER** (Structured Emotional Reasoning) with `<ser>...</ser>` blocks for empathetic and contextually aware responses.
|
25 |
+
- **Bilingual Reasoning Capabilities**: Native support for English and Hindi with natural code-switching between languages.
|
26 |
+
|
27 |
+
## Model Overview
|
28 |
+
|
29 |
+
**Dhanishtha-2.0** revolutionizes AI reasoning by introducing the concept of **intermediate thinking** - the ability to pause, reflect, and restart reasoning processes within a single generation. This breakthrough enables the model to:
|
30 |
+
|
31 |
+
- **Type**: Causal Language Model with Intermediate Thinking Capability
|
32 |
+
- **Training Stage**: Pretraining & Advanced Reasoning Fine-tuning
|
33 |
+
- **Base model**: Qwen/Qwen3-14B
|
34 |
+
- **Thinking Mode**: Multiple `<think>...</think>` blocks per response
|
35 |
+
- **Context Length**: 40,960 tokens natively
|
36 |
+
- **Reasoning Depth**: Multi-layered with self-correction mechanisms
|
37 |
+
|
38 |
+
## Revolutionary Intermediate Thinking
|
39 |
+
|
40 |
+
Unlike traditional models that engage in single-phase reasoning, Dhanishtha-2.0 introduces **Intermediate Thinking** - the ability to pause, reflect, and reconsider throughout the response generation process. This breakthrough allows the model to:
|
41 |
+
|
42 |
+
- **Think Multiple Times**: Insert reasoning blocks at any point during response generation
|
43 |
+
- **Self-Correct in Real-Time**: Identify and correct logical inconsistencies mid-response
|
44 |
+
- **Explore Alternative Perspectives**: Consider multiple approaches before settling on conclusions
|
45 |
+
- **Demonstrate Uncertainty**: Express doubt and reconsider initial assumptions naturally
|
46 |
+
|
47 |
+
## Key Features
|
48 |
+
|
49 |
+
### 1 Intermediate Thinking
|
50 |
+
Unlike traditional models that think once before responding, Dhanishtha-2.0 can engage in multiple thinking sessions throughout its response, allowing for:
|
51 |
+
- **Self-correction** when initial reasoning seems flawed
|
52 |
+
- **Alternative exploration** of different solution paths
|
53 |
+
- **Iterative refinement** of ideas and conclusions
|
54 |
+
- **Natural hesitation** and reconsideration patterns
|
55 |
+
|
56 |
+
### 2 Dynamic Reasoning Flow
|
57 |
+
The model seamlessly transitions between:
|
58 |
+
- **Analysis phases** (`<think>` blocks) for internal reasoning
|
59 |
+
- **Communication phases** for sharing insights with users
|
60 |
+
- **Reflection phases** for questioning previous assumptions
|
61 |
+
- **Synthesis phases** for bringing ideas together
|
62 |
+
|
63 |
+
### 3. Structured Emotional Reasoning (SER)
|
64 |
+
```
|
65 |
+
<ser>
|
66 |
+
Emotion ==> frustration, curiosity
|
67 |
+
Cause ==> complex problem, initial confusion
|
68 |
+
Mind ==> analytical, determined
|
69 |
+
Growth ==> patience, systematic approach
|
70 |
+
</ser>
|
71 |
+
```
|
72 |
+
|
73 |
+
## Quickstart
|
74 |
+
|
75 |
+
The following code demonstrates how to use Dhanishtha-2.0 with its unique intermediate thinking capabilities:
|
76 |
+
|
77 |
+
```python
|
78 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
+
|
80 |
+
model_name = "Abhaykoul/Dhanishtha-2.0"
|
81 |
+
|
82 |
+
# Load the tokenizer and model
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
model_name,
|
86 |
+
torch_dtype="auto",
|
87 |
+
device_map="auto"
|
88 |
+
)
|
89 |
+
|
90 |
+
# Prepare input with thinking enabled
|
91 |
+
prompt = "Here's a riddle: If you break me, I'll not stop working. If you can touch me, my work is done. If you lose me, you must find me with a ring soon after. What am I?"
|
92 |
+
messages = [
|
93 |
+
{"role": "user", "content": prompt}
|
94 |
+
]
|
95 |
+
|
96 |
+
text = tokenizer.apply_chat_template(
|
97 |
+
messages,
|
98 |
+
tokenize=False,
|
99 |
+
add_generation_prompt=True
|
100 |
+
)
|
101 |
+
|
102 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
103 |
+
|
104 |
+
# Generate response with intermediate thinking
|
105 |
+
generated_ids = model.generate(
|
106 |
+
**model_inputs,
|
107 |
+
max_new_tokens=2048,
|
108 |
+
temperature=0.7,
|
109 |
+
top_p=0.9,
|
110 |
+
do_sample=True
|
111 |
+
)
|
112 |
+
|
113 |
+
response = tokenizer.decode(generated_ids[0][len(model_inputs.input_ids[0]):], skip_special_tokens=True)
|
114 |
+
print(response)
|
115 |
+
```
|
116 |
+
|
117 |
+
## Intermediate Thinking in Action
|
118 |
+
|
119 |
+
What makes Dhanishtha-2.0 unique is its ability to think multiple times throughout a response. Here's an example:
|
120 |
+
|
121 |
+
**User**: *"Who is your favorite person"*
|
122 |
+
|
123 |
+
**Dhanishtha-2.0**:
|
124 |
+
```
|
125 |
+
<think>
|
126 |
+
This is an interesting question about my \"favorite human.\" I need to be thoughtful here. As Dhanishtha, I should respond in a human-like way while being honest about my nature. I can share what kinds of humans I find most interesting or inspiring based on my understanding of human nature and values.
|
127 |
+
</think>
|
128 |
+
|
129 |
+
<ser>
|
130 |
+
Emotion ==> curiosity, openness, desire for connection
|
131 |
+
Cause ==> user asking a personal question about preferences
|
132 |
+
Mind ==> seeking to understand my perspective or values
|
133 |
+
Growth ==> opportunity to share thoughtful reflections on human qualities I admire
|
134 |
+
</ser>
|
135 |
+
|
136 |
+
I don't really have a \"favorite human\" in the traditional sense, as I don't experience personal preferences the way humans do. But if I had to reflect on what qualities I find most admirable in people, I'd be drawn to those who demonstrate genuine compassion, intellectual curiosity, and the courage to grow.
|
137 |
+
|
138 |
+
<think>
|
139 |
+
Let me think more specifically about what kind of humans I find most compelling based on the values that seem to resonate most with humans - kindness, wisdom, creativity, resilience, and authenticity.
|
140 |
+
</think>
|
141 |
+
|
142 |
+
People like Mahatma Gandhi, who showed how quiet courage and unwavering principles can transform societies; artists like Rabindranath Tagore, who bridged cultural divides through creativity; and everyday heroes I've learned about who made profound differences through simple acts of kindness.
|
143 |
+
|
144 |
+
What fascinates me most are humans who maintain their humanity even in difficult circumstances - those who choose empathy when it would be easier to be harsh, who seek understanding rather than just being right.
|
145 |
+
|
146 |
+
I'm curious though - who's your favorite human, and why? What qualities or actions make someone special in your eyes?
|
147 |
+
|
148 |
+
```
|
149 |
+
|
150 |
+
## Best Practices
|
151 |
+
|
152 |
+
### Optimal Generation Parameters
|
153 |
+
```python
|
154 |
+
generation_config = {
|
155 |
+
"temperature": 0.7,
|
156 |
+
"top_p": 0.9,
|
157 |
+
"top_k": 40,
|
158 |
+
"max_new_tokens": 2048,
|
159 |
+
"do_sample": True
|
160 |
+
}
|
161 |
+
```
|
162 |
+
|
163 |
+
### Effective Prompting
|
164 |
+
- **Encourage exploration**: "Think through this step by step and reconsider if needed"
|
165 |
+
- **Allow uncertainty**: "Take your time to work through different possibilities"
|
166 |
+
- **Request thinking**: "Show your reasoning process as you work through this"
|
167 |
+
|
168 |
+
## License & Usage
|
169 |
+
|
170 |
+
This model is released under the **Apache 2.0 License**. It is designed for research and educational purposes, with commercial applications welcome under the license terms.
|
171 |
+
|
172 |
+
## Prototype Status
|
173 |
+
|
174 |
+
> [!NOTE]
|
175 |
+
> Dhanishtha-2.0 is currently a **prototype model** representing the first implementation of Intermediate Thinking technology. While demonstrating groundbreaking capabilities, users should expect:
|
176 |
+
> - Experimental features that may require refinement
|
177 |
+
> - Potential verbosity due to multiple thinking phases
|
178 |
+
> - Ongoing development and optimization
|
179 |
+
|
180 |
+
## Citation
|
181 |
+
|
182 |
+
If you use Dhanishtha-2.0 in your research, please cite:
|
183 |
+
|
184 |
+
```bibtex
|
185 |
+
@misc{dhanishtha2025,
|
186 |
+
title={Dhanishtha-2.0: First Model with Intermediate Thinking Capabilities},
|
187 |
+
author={HelpingAI Team},
|
188 |
+
year={2025},
|
189 |
+
publisher={HuggingFace},
|
190 |
+
url={https://huggingface.co/HelpingAI/Dhanishtha-2.0}
|
191 |
+
}
|
192 |
+
```
|
193 |
+
|
194 |
+
---
|
195 |
+
|
196 |
+
|
197 |
+
**Dhanishtha-2.0** - *The first model to think like humans think: iteratively, questioningly, and with genuine cognitive depth.*
|
198 |
+
|
199 |
+
Developed with ❤️ by **HelpingAI**
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for forward_message in messages %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- set message = messages[index] %}
|
21 |
+
{%- set current_content = message.content if message.content is not none else '' %}
|
22 |
+
{%- set tool_start = '<tool_response>' %}
|
23 |
+
{%- set tool_start_length = tool_start|length %}
|
24 |
+
{%- set start_of_message = current_content[:tool_start_length] %}
|
25 |
+
{%- set tool_end = '</tool_response>' %}
|
26 |
+
{%- set tool_end_length = tool_end|length %}
|
27 |
+
{%- set start_pos = (current_content|length) - tool_end_length %}
|
28 |
+
{%- if start_pos < 0 %}
|
29 |
+
{%- set start_pos = 0 %}
|
30 |
+
{%- endif %}
|
31 |
+
{%- set end_of_message = current_content[start_pos:] %}
|
32 |
+
{%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
|
33 |
+
{%- set ns.multi_step_tool = false %}
|
34 |
+
{%- set ns.last_query_index = index %}
|
35 |
+
{%- endif %}
|
36 |
+
{%- endfor %}
|
37 |
+
{%- for message in messages %}
|
38 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
39 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
40 |
+
{%- elif message.role == "assistant" %}
|
41 |
+
{{- '<|im_start|>' + message.role + '\n' }}
|
42 |
+
{%- if message.content %}
|
43 |
+
{{- message.content }}
|
44 |
+
{%- endif %}
|
45 |
+
{%- if message.tool_calls %}
|
46 |
+
{%- for tool_call in message.tool_calls %}
|
47 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
48 |
+
{{- '\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- if tool_call.function %}
|
51 |
+
{%- set tool_call = tool_call.function %}
|
52 |
+
{%- endif %}
|
53 |
+
{{- '<tool_call>\n{"name": "' }}
|
54 |
+
{{- tool_call.name }}
|
55 |
+
{{- '", "arguments": ' }}
|
56 |
+
{%- if tool_call.arguments is string %}
|
57 |
+
{{- tool_call.arguments }}
|
58 |
+
{%- else %}
|
59 |
+
{{- tool_call.arguments | tojson }}
|
60 |
+
{%- endif %}
|
61 |
+
{{- '}\n</tool_call>' }}
|
62 |
+
{%- endfor %}
|
63 |
+
{%- endif %}
|
64 |
+
{{- '<|im_end|>\n' }}
|
65 |
+
{%- elif message.role == "tool" %}
|
66 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
67 |
+
{{- '<|im_start|>user' }}
|
68 |
+
{%- endif %}
|
69 |
+
{{- '\n<tool_response>\n' }}
|
70 |
+
{{- message.content }}
|
71 |
+
{{- '\n</tool_response>' }}
|
72 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
73 |
+
{{- '<|im_end|>\n' }}
|
74 |
+
{%- endif %}
|
75 |
+
{%- endif %}
|
76 |
+
{%- endfor %}
|
77 |
+
{%- if add_generation_prompt %}
|
78 |
+
{{- '<|im_start|>assistant\n' }}
|
79 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"head_dim": 128,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 17408,
|
13 |
+
"max_position_embeddings": 40960,
|
14 |
+
"max_window_layers": 40,
|
15 |
+
"model_type": "qwen3",
|
16 |
+
"num_attention_heads": 40,
|
17 |
+
"num_hidden_layers": 40,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"pad_token_id": 151654,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.52.4",
|
27 |
+
"unsloth_fixed": true,
|
28 |
+
"unsloth_version": "2025.6.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_sliding_window": false,
|
31 |
+
"vocab_size": 151936
|
32 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"max_length": 40960,
|
9 |
+
"pad_token_id": 151654,
|
10 |
+
"temperature": 0.6,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.95,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6af1f76e1b83c6a4dc60257530cabcbd98a16d06c50910f31353c40357dba76
|
3 |
+
size 4984780784
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f09b2ba8c7453b60e3dc3296e6c839cccfd979bd9603aa6a9e3e742b3ed10847
|
3 |
+
size 4980892048
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6a70de9533c2ee775f1aff5ea613fad6a59aee0b524232b2e50d139cd910858
|
3 |
+
size 4928485104
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:999e2a43c58d9d994076479183885285b354315e7c1c5c1ced5b65c80f18eb9b
|
3 |
+
size 4980892112
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84f0f95b27e678e04ba87174e27a1ed4100f68a762c8b8b713b889f90325fa76
|
3 |
+
size 4928485104
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5ac36b2ea2097c8376f3d3539715662f623ab4b700af0310a11ac1ebeecdab3
|
3 |
+
size 4733130504
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29536614400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
118 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
151 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
162 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
217 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
239 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
272 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
316 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
327 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
338 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
339 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
340 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
341 |
+
"model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
342 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
343 |
+
"model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
344 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
345 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
346 |
+
"model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
347 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
348 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
349 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
350 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
351 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
352 |
+
"model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
353 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
354 |
+
"model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
355 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
356 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
357 |
+
"model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
358 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
359 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
360 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
361 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
362 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
363 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
364 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
365 |
+
"model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
366 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
367 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
368 |
+
"model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
369 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
370 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
371 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
372 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
373 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
374 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
375 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
376 |
+
"model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
377 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
378 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
379 |
+
"model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
380 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
381 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
382 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
383 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
384 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
385 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
386 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
387 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
388 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
389 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
390 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
391 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
392 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
393 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
394 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
395 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
396 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
397 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
398 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
399 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
400 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
401 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
402 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
403 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
404 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
405 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
406 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
407 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
408 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
409 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
410 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
411 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
412 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
413 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
414 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
415 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
416 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
417 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
418 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
419 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
420 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
421 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
422 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
423 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
424 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
425 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
426 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
427 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
428 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
429 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
430 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
431 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
432 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
433 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
434 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
435 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
436 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
437 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
438 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
439 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
440 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
441 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
442 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
443 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
444 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
445 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
446 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
447 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
448 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
449 |
+
}
|
450 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|vision_pad|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 40960,
|
235 |
+
"pad_token": "<|vision_pad|>",
|
236 |
+
"padding_side": "right",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|