Abhaykoul commited on
Commit
81e7dcf
·
verified ·
1 Parent(s): d40e52c

World's First Intermediate Thinking Model: Dhanishtha-2.0-preview

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - Abhaykoul/Dhanishtha-R1
6
+ - open-thoughts/OpenThoughts-114k
7
+ language:
8
+ - en
9
+ - hi
10
+ base_model:
11
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # Dhanishtha-2.0
16
+
17
+ ## Dhanishtha-2.0 Highlights
18
+
19
+ **Dhanishtha-2.0** is a groundbreaking reasoning AI model developed by **HelpingAI**, representing the first model to feature **Intermediate thinking** capabilities. Unlike traditional models that provide single-pass responses, Dhanishtha-2.0 employs a revolutionary **multi-phase thinking process** that allows the model to think, reconsider, and refine its reasoning multiple times throughout a single response.
20
+
21
+ - **World's First Intermediate Thinking Model**: Uniquely capable of **multiple thinking phases throughout a single response**, enabling deeper analysis and self-correction during generation.
22
+ - **Dynamic Reasoning**: Seamlessly integrates `<think>...</think>` blocks at any point in the response, allowing for real-time problem decomposition and iterative refinement.
23
+ - **Enhanced Problem-Solving Architecture**: Excels at complex riddles, multi-step reasoning, and scenarios requiring backtracking and re-evaluation of initial assumptions.
24
+ - **Structured Emotional Intelligence**: Incorporates **SER** (Structured Emotional Reasoning) with `<ser>...</ser>` blocks for empathetic and contextually aware responses.
25
+ - **Bilingual Reasoning Capabilities**: Native support for English and Hindi with natural code-switching between languages.
26
+
27
+ ## Model Overview
28
+
29
+ **Dhanishtha-2.0** revolutionizes AI reasoning by introducing the concept of **intermediate thinking** - the ability to pause, reflect, and restart reasoning processes within a single generation. This breakthrough enables the model to:
30
+
31
+ - **Type**: Causal Language Model with Intermediate Thinking Capability
32
+ - **Training Stage**: Pretraining & Advanced Reasoning Fine-tuning
33
+ - **Base model**: Qwen/Qwen3-14B
34
+ - **Thinking Mode**: Multiple `<think>...</think>` blocks per response
35
+ - **Context Length**: 40,960 tokens natively
36
+ - **Reasoning Depth**: Multi-layered with self-correction mechanisms
37
+
38
+ ## Revolutionary Intermediate Thinking
39
+
40
+ Unlike traditional models that engage in single-phase reasoning, Dhanishtha-2.0 introduces **Intermediate Thinking** - the ability to pause, reflect, and reconsider throughout the response generation process. This breakthrough allows the model to:
41
+
42
+ - **Think Multiple Times**: Insert reasoning blocks at any point during response generation
43
+ - **Self-Correct in Real-Time**: Identify and correct logical inconsistencies mid-response
44
+ - **Explore Alternative Perspectives**: Consider multiple approaches before settling on conclusions
45
+ - **Demonstrate Uncertainty**: Express doubt and reconsider initial assumptions naturally
46
+
47
+ ## Key Features
48
+
49
+ ### 1 Intermediate Thinking
50
+ Unlike traditional models that think once before responding, Dhanishtha-2.0 can engage in multiple thinking sessions throughout its response, allowing for:
51
+ - **Self-correction** when initial reasoning seems flawed
52
+ - **Alternative exploration** of different solution paths
53
+ - **Iterative refinement** of ideas and conclusions
54
+ - **Natural hesitation** and reconsideration patterns
55
+
56
+ ### 2 Dynamic Reasoning Flow
57
+ The model seamlessly transitions between:
58
+ - **Analysis phases** (`<think>` blocks) for internal reasoning
59
+ - **Communication phases** for sharing insights with users
60
+ - **Reflection phases** for questioning previous assumptions
61
+ - **Synthesis phases** for bringing ideas together
62
+
63
+ ### 3. Structured Emotional Reasoning (SER)
64
+ ```
65
+ <ser>
66
+ Emotion ==> frustration, curiosity
67
+ Cause ==> complex problem, initial confusion
68
+ Mind ==> analytical, determined
69
+ Growth ==> patience, systematic approach
70
+ </ser>
71
+ ```
72
+
73
+ ## Quickstart
74
+
75
+ The following code demonstrates how to use Dhanishtha-2.0 with its unique intermediate thinking capabilities:
76
+
77
+ ```python
78
+ from transformers import AutoModelForCausalLM, AutoTokenizer
79
+
80
+ model_name = "Abhaykoul/Dhanishtha-2.0"
81
+
82
+ # Load the tokenizer and model
83
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ model_name,
86
+ torch_dtype="auto",
87
+ device_map="auto"
88
+ )
89
+
90
+ # Prepare input with thinking enabled
91
+ prompt = "Here's a riddle: If you break me, I'll not stop working. If you can touch me, my work is done. If you lose me, you must find me with a ring soon after. What am I?"
92
+ messages = [
93
+ {"role": "user", "content": prompt}
94
+ ]
95
+
96
+ text = tokenizer.apply_chat_template(
97
+ messages,
98
+ tokenize=False,
99
+ add_generation_prompt=True
100
+ )
101
+
102
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
103
+
104
+ # Generate response with intermediate thinking
105
+ generated_ids = model.generate(
106
+ **model_inputs,
107
+ max_new_tokens=2048,
108
+ temperature=0.7,
109
+ top_p=0.9,
110
+ do_sample=True
111
+ )
112
+
113
+ response = tokenizer.decode(generated_ids[0][len(model_inputs.input_ids[0]):], skip_special_tokens=True)
114
+ print(response)
115
+ ```
116
+
117
+ ## Intermediate Thinking in Action
118
+
119
+ What makes Dhanishtha-2.0 unique is its ability to think multiple times throughout a response. Here's an example:
120
+
121
+ **User**: *"Who is your favorite person"*
122
+
123
+ **Dhanishtha-2.0**:
124
+ ```
125
+ <think>
126
+ This is an interesting question about my \"favorite human.\" I need to be thoughtful here. As Dhanishtha, I should respond in a human-like way while being honest about my nature. I can share what kinds of humans I find most interesting or inspiring based on my understanding of human nature and values.
127
+ </think>
128
+
129
+ <ser>
130
+ Emotion ==> curiosity, openness, desire for connection
131
+ Cause ==> user asking a personal question about preferences
132
+ Mind ==> seeking to understand my perspective or values
133
+ Growth ==> opportunity to share thoughtful reflections on human qualities I admire
134
+ </ser>
135
+
136
+ I don't really have a \"favorite human\" in the traditional sense, as I don't experience personal preferences the way humans do. But if I had to reflect on what qualities I find most admirable in people, I'd be drawn to those who demonstrate genuine compassion, intellectual curiosity, and the courage to grow.
137
+
138
+ <think>
139
+ Let me think more specifically about what kind of humans I find most compelling based on the values that seem to resonate most with humans - kindness, wisdom, creativity, resilience, and authenticity.
140
+ </think>
141
+
142
+ People like Mahatma Gandhi, who showed how quiet courage and unwavering principles can transform societies; artists like Rabindranath Tagore, who bridged cultural divides through creativity; and everyday heroes I've learned about who made profound differences through simple acts of kindness.
143
+
144
+ What fascinates me most are humans who maintain their humanity even in difficult circumstances - those who choose empathy when it would be easier to be harsh, who seek understanding rather than just being right.
145
+
146
+ I'm curious though - who's your favorite human, and why? What qualities or actions make someone special in your eyes?
147
+
148
+ ```
149
+
150
+ ## Best Practices
151
+
152
+ ### Optimal Generation Parameters
153
+ ```python
154
+ generation_config = {
155
+ "temperature": 0.7,
156
+ "top_p": 0.9,
157
+ "top_k": 40,
158
+ "max_new_tokens": 2048,
159
+ "do_sample": True
160
+ }
161
+ ```
162
+
163
+ ### Effective Prompting
164
+ - **Encourage exploration**: "Think through this step by step and reconsider if needed"
165
+ - **Allow uncertainty**: "Take your time to work through different possibilities"
166
+ - **Request thinking**: "Show your reasoning process as you work through this"
167
+
168
+ ## License & Usage
169
+
170
+ This model is released under the **Apache 2.0 License**. It is designed for research and educational purposes, with commercial applications welcome under the license terms.
171
+
172
+ ## Prototype Status
173
+
174
+ > [!NOTE]
175
+ > Dhanishtha-2.0 is currently a **prototype model** representing the first implementation of Intermediate Thinking technology. While demonstrating groundbreaking capabilities, users should expect:
176
+ > - Experimental features that may require refinement
177
+ > - Potential verbosity due to multiple thinking phases
178
+ > - Ongoing development and optimization
179
+
180
+ ## Citation
181
+
182
+ If you use Dhanishtha-2.0 in your research, please cite:
183
+
184
+ ```bibtex
185
+ @misc{dhanishtha2025,
186
+ title={Dhanishtha-2.0: First Model with Intermediate Thinking Capabilities},
187
+ author={HelpingAI Team},
188
+ year={2025},
189
+ publisher={HuggingFace},
190
+ url={https://huggingface.co/HelpingAI/Dhanishtha-2.0}
191
+ }
192
+ ```
193
+
194
+ ---
195
+
196
+
197
+ **Dhanishtha-2.0** - *The first model to think like humans think: iteratively, questioningly, and with genuine cognitive depth.*
198
+
199
+ Developed with ❤️ by **HelpingAI**
.ipynb_checkpoints/vocab-checkpoint.json ADDED
The diff for this file is too large to render. See raw diff
 
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - Abhaykoul/Dhanishtha-R1
6
+ - open-thoughts/OpenThoughts-114k
7
+ language:
8
+ - en
9
+ - hi
10
+ base_model:
11
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # Dhanishtha-2.0
16
+
17
+ ## Dhanishtha-2.0 Highlights
18
+
19
+ **Dhanishtha-2.0** is a groundbreaking reasoning AI model developed by **HelpingAI**, representing the first model to feature **Intermediate thinking** capabilities. Unlike traditional models that provide single-pass responses, Dhanishtha-2.0 employs a revolutionary **multi-phase thinking process** that allows the model to think, reconsider, and refine its reasoning multiple times throughout a single response.
20
+
21
+ - **World's First Intermediate Thinking Model**: Uniquely capable of **multiple thinking phases throughout a single response**, enabling deeper analysis and self-correction during generation.
22
+ - **Dynamic Reasoning**: Seamlessly integrates `<think>...</think>` blocks at any point in the response, allowing for real-time problem decomposition and iterative refinement.
23
+ - **Enhanced Problem-Solving Architecture**: Excels at complex riddles, multi-step reasoning, and scenarios requiring backtracking and re-evaluation of initial assumptions.
24
+ - **Structured Emotional Intelligence**: Incorporates **SER** (Structured Emotional Reasoning) with `<ser>...</ser>` blocks for empathetic and contextually aware responses.
25
+ - **Bilingual Reasoning Capabilities**: Native support for English and Hindi with natural code-switching between languages.
26
+
27
+ ## Model Overview
28
+
29
+ **Dhanishtha-2.0** revolutionizes AI reasoning by introducing the concept of **intermediate thinking** - the ability to pause, reflect, and restart reasoning processes within a single generation. This breakthrough enables the model to:
30
+
31
+ - **Type**: Causal Language Model with Intermediate Thinking Capability
32
+ - **Training Stage**: Pretraining & Advanced Reasoning Fine-tuning
33
+ - **Base model**: Qwen/Qwen3-14B
34
+ - **Thinking Mode**: Multiple `<think>...</think>` blocks per response
35
+ - **Context Length**: 40,960 tokens natively
36
+ - **Reasoning Depth**: Multi-layered with self-correction mechanisms
37
+
38
+ ## Revolutionary Intermediate Thinking
39
+
40
+ Unlike traditional models that engage in single-phase reasoning, Dhanishtha-2.0 introduces **Intermediate Thinking** - the ability to pause, reflect, and reconsider throughout the response generation process. This breakthrough allows the model to:
41
+
42
+ - **Think Multiple Times**: Insert reasoning blocks at any point during response generation
43
+ - **Self-Correct in Real-Time**: Identify and correct logical inconsistencies mid-response
44
+ - **Explore Alternative Perspectives**: Consider multiple approaches before settling on conclusions
45
+ - **Demonstrate Uncertainty**: Express doubt and reconsider initial assumptions naturally
46
+
47
+ ## Key Features
48
+
49
+ ### 1 Intermediate Thinking
50
+ Unlike traditional models that think once before responding, Dhanishtha-2.0 can engage in multiple thinking sessions throughout its response, allowing for:
51
+ - **Self-correction** when initial reasoning seems flawed
52
+ - **Alternative exploration** of different solution paths
53
+ - **Iterative refinement** of ideas and conclusions
54
+ - **Natural hesitation** and reconsideration patterns
55
+
56
+ ### 2 Dynamic Reasoning Flow
57
+ The model seamlessly transitions between:
58
+ - **Analysis phases** (`<think>` blocks) for internal reasoning
59
+ - **Communication phases** for sharing insights with users
60
+ - **Reflection phases** for questioning previous assumptions
61
+ - **Synthesis phases** for bringing ideas together
62
+
63
+ ### 3. Structured Emotional Reasoning (SER)
64
+ ```
65
+ <ser>
66
+ Emotion ==> frustration, curiosity
67
+ Cause ==> complex problem, initial confusion
68
+ Mind ==> analytical, determined
69
+ Growth ==> patience, systematic approach
70
+ </ser>
71
+ ```
72
+
73
+ ## Quickstart
74
+
75
+ The following code demonstrates how to use Dhanishtha-2.0 with its unique intermediate thinking capabilities:
76
+
77
+ ```python
78
+ from transformers import AutoModelForCausalLM, AutoTokenizer
79
+
80
+ model_name = "Abhaykoul/Dhanishtha-2.0"
81
+
82
+ # Load the tokenizer and model
83
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ model_name,
86
+ torch_dtype="auto",
87
+ device_map="auto"
88
+ )
89
+
90
+ # Prepare input with thinking enabled
91
+ prompt = "Here's a riddle: If you break me, I'll not stop working. If you can touch me, my work is done. If you lose me, you must find me with a ring soon after. What am I?"
92
+ messages = [
93
+ {"role": "user", "content": prompt}
94
+ ]
95
+
96
+ text = tokenizer.apply_chat_template(
97
+ messages,
98
+ tokenize=False,
99
+ add_generation_prompt=True
100
+ )
101
+
102
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
103
+
104
+ # Generate response with intermediate thinking
105
+ generated_ids = model.generate(
106
+ **model_inputs,
107
+ max_new_tokens=2048,
108
+ temperature=0.7,
109
+ top_p=0.9,
110
+ do_sample=True
111
+ )
112
+
113
+ response = tokenizer.decode(generated_ids[0][len(model_inputs.input_ids[0]):], skip_special_tokens=True)
114
+ print(response)
115
+ ```
116
+
117
+ ## Intermediate Thinking in Action
118
+
119
+ What makes Dhanishtha-2.0 unique is its ability to think multiple times throughout a response. Here's an example:
120
+
121
+ **User**: *"Who is your favorite person"*
122
+
123
+ **Dhanishtha-2.0**:
124
+ ```
125
+ <think>
126
+ This is an interesting question about my \"favorite human.\" I need to be thoughtful here. As Dhanishtha, I should respond in a human-like way while being honest about my nature. I can share what kinds of humans I find most interesting or inspiring based on my understanding of human nature and values.
127
+ </think>
128
+
129
+ <ser>
130
+ Emotion ==> curiosity, openness, desire for connection
131
+ Cause ==> user asking a personal question about preferences
132
+ Mind ==> seeking to understand my perspective or values
133
+ Growth ==> opportunity to share thoughtful reflections on human qualities I admire
134
+ </ser>
135
+
136
+ I don't really have a \"favorite human\" in the traditional sense, as I don't experience personal preferences the way humans do. But if I had to reflect on what qualities I find most admirable in people, I'd be drawn to those who demonstrate genuine compassion, intellectual curiosity, and the courage to grow.
137
+
138
+ <think>
139
+ Let me think more specifically about what kind of humans I find most compelling based on the values that seem to resonate most with humans - kindness, wisdom, creativity, resilience, and authenticity.
140
+ </think>
141
+
142
+ People like Mahatma Gandhi, who showed how quiet courage and unwavering principles can transform societies; artists like Rabindranath Tagore, who bridged cultural divides through creativity; and everyday heroes I've learned about who made profound differences through simple acts of kindness.
143
+
144
+ What fascinates me most are humans who maintain their humanity even in difficult circumstances - those who choose empathy when it would be easier to be harsh, who seek understanding rather than just being right.
145
+
146
+ I'm curious though - who's your favorite human, and why? What qualities or actions make someone special in your eyes?
147
+
148
+ ```
149
+
150
+ ## Best Practices
151
+
152
+ ### Optimal Generation Parameters
153
+ ```python
154
+ generation_config = {
155
+ "temperature": 0.7,
156
+ "top_p": 0.9,
157
+ "top_k": 40,
158
+ "max_new_tokens": 2048,
159
+ "do_sample": True
160
+ }
161
+ ```
162
+
163
+ ### Effective Prompting
164
+ - **Encourage exploration**: "Think through this step by step and reconsider if needed"
165
+ - **Allow uncertainty**: "Take your time to work through different possibilities"
166
+ - **Request thinking**: "Show your reasoning process as you work through this"
167
+
168
+ ## License & Usage
169
+
170
+ This model is released under the **Apache 2.0 License**. It is designed for research and educational purposes, with commercial applications welcome under the license terms.
171
+
172
+ ## Prototype Status
173
+
174
+ > [!NOTE]
175
+ > Dhanishtha-2.0 is currently a **prototype model** representing the first implementation of Intermediate Thinking technology. While demonstrating groundbreaking capabilities, users should expect:
176
+ > - Experimental features that may require refinement
177
+ > - Potential verbosity due to multiple thinking phases
178
+ > - Ongoing development and optimization
179
+
180
+ ## Citation
181
+
182
+ If you use Dhanishtha-2.0 in your research, please cite:
183
+
184
+ ```bibtex
185
+ @misc{dhanishtha2025,
186
+ title={Dhanishtha-2.0: First Model with Intermediate Thinking Capabilities},
187
+ author={HelpingAI Team},
188
+ year={2025},
189
+ publisher={HuggingFace},
190
+ url={https://huggingface.co/HelpingAI/Dhanishtha-2.0}
191
+ }
192
+ ```
193
+
194
+ ---
195
+
196
+
197
+ **Dhanishtha-2.0** - *The first model to think like humans think: iteratively, questioningly, and with genuine cognitive depth.*
198
+
199
+ Developed with ❤️ by **HelpingAI**
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for forward_message in messages %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- set message = messages[index] %}
21
+ {%- set current_content = message.content if message.content is not none else '' %}
22
+ {%- set tool_start = '<tool_response>' %}
23
+ {%- set tool_start_length = tool_start|length %}
24
+ {%- set start_of_message = current_content[:tool_start_length] %}
25
+ {%- set tool_end = '</tool_response>' %}
26
+ {%- set tool_end_length = tool_end|length %}
27
+ {%- set start_pos = (current_content|length) - tool_end_length %}
28
+ {%- if start_pos < 0 %}
29
+ {%- set start_pos = 0 %}
30
+ {%- endif %}
31
+ {%- set end_of_message = current_content[start_pos:] %}
32
+ {%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
33
+ {%- set ns.multi_step_tool = false %}
34
+ {%- set ns.last_query_index = index %}
35
+ {%- endif %}
36
+ {%- endfor %}
37
+ {%- for message in messages %}
38
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
39
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
40
+ {%- elif message.role == "assistant" %}
41
+ {{- '<|im_start|>' + message.role + '\n' }}
42
+ {%- if message.content %}
43
+ {{- message.content }}
44
+ {%- endif %}
45
+ {%- if message.tool_calls %}
46
+ {%- for tool_call in message.tool_calls %}
47
+ {%- if (loop.first and content) or (not loop.first) %}
48
+ {{- '\n' }}
49
+ {%- endif %}
50
+ {%- if tool_call.function %}
51
+ {%- set tool_call = tool_call.function %}
52
+ {%- endif %}
53
+ {{- '<tool_call>\n{"name": "' }}
54
+ {{- tool_call.name }}
55
+ {{- '", "arguments": ' }}
56
+ {%- if tool_call.arguments is string %}
57
+ {{- tool_call.arguments }}
58
+ {%- else %}
59
+ {{- tool_call.arguments | tojson }}
60
+ {%- endif %}
61
+ {{- '}\n</tool_call>' }}
62
+ {%- endfor %}
63
+ {%- endif %}
64
+ {{- '<|im_end|>\n' }}
65
+ {%- elif message.role == "tool" %}
66
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
67
+ {{- '<|im_start|>user' }}
68
+ {%- endif %}
69
+ {{- '\n<tool_response>\n' }}
70
+ {{- message.content }}
71
+ {{- '\n</tool_response>' }}
72
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
73
+ {{- '<|im_end|>\n' }}
74
+ {%- endif %}
75
+ {%- endif %}
76
+ {%- endfor %}
77
+ {%- if add_generation_prompt %}
78
+ {{- '<|im_start|>assistant\n' }}
79
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 17408,
13
+ "max_position_embeddings": 40960,
14
+ "max_window_layers": 40,
15
+ "model_type": "qwen3",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "pad_token_id": 151654,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.52.4",
27
+ "unsloth_fixed": true,
28
+ "unsloth_version": "2025.6.1",
29
+ "use_cache": true,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 151936
32
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "max_length": 40960,
9
+ "pad_token_id": 151654,
10
+ "temperature": 0.6,
11
+ "top_k": 20,
12
+ "top_p": 0.95,
13
+ "transformers_version": "4.52.4"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6af1f76e1b83c6a4dc60257530cabcbd98a16d06c50910f31353c40357dba76
3
+ size 4984780784
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f09b2ba8c7453b60e3dc3296e6c839cccfd979bd9603aa6a9e3e742b3ed10847
3
+ size 4980892048
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6a70de9533c2ee775f1aff5ea613fad6a59aee0b524232b2e50d139cd910858
3
+ size 4928485104
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:999e2a43c58d9d994076479183885285b354315e7c1c5c1ced5b65c80f18eb9b
3
+ size 4980892112
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84f0f95b27e678e04ba87174e27a1ed4100f68a762c8b8b713b889f90325fa76
3
+ size 4928485104
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ac36b2ea2097c8376f3d3539715662f623ab4b700af0310a11ac1ebeecdab3
3
+ size 4733130504
model.safetensors.index.json ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29536614400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
338
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
339
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
340
+ "model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
341
+ "model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
342
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
343
+ "model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
344
+ "model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
345
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
346
+ "model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
347
+ "model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
348
+ "model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
349
+ "model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
350
+ "model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
351
+ "model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
352
+ "model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
353
+ "model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
354
+ "model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
355
+ "model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
356
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
357
+ "model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
358
+ "model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
359
+ "model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
360
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
361
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
362
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
363
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
364
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
365
+ "model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
366
+ "model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
367
+ "model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
368
+ "model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
369
+ "model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
370
+ "model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
371
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
372
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
373
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
374
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
375
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
376
+ "model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
377
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
378
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
379
+ "model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
380
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
381
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
382
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
383
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
384
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
385
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
386
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
387
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
388
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
389
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
390
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
391
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
392
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
393
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
394
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
395
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
396
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
397
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
398
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
399
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
400
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
401
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
402
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
403
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
404
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
405
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
406
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
407
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
408
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
409
+ "model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
410
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
411
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
412
+ "model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
413
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
414
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
415
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
416
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
417
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
418
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
419
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
420
+ "model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
421
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
422
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
423
+ "model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
424
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
425
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
426
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
427
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
428
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
429
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
430
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
431
+ "model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
432
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
433
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
434
+ "model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
435
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
436
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
437
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
438
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
439
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
440
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
441
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
442
+ "model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
443
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
444
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
445
+ "model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
446
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
447
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
448
+ "model.norm.weight": "model-00006-of-00006.safetensors"
449
+ }
450
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 40960,
235
+ "pad_token": "<|vision_pad|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff