File size: 25,897 Bytes
98b60ee 20c3d21 98b60ee 20c3d21 98b60ee d688a46 08affb0 8c54fda 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 eac2dd1 20c3d21 eac2dd1 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 eac2dd1 20c3d21 eac2dd1 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 eac2dd1 20c3d21 eac2dd1 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 eac2dd1 20c3d21 eac2dd1 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 eac2dd1 20c3d21 eac2dd1 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 eac2dd1 20c3d21 eac2dd1 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 eac2dd1 20c3d21 eac2dd1 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 4f62b61 20c3d21 d688a46 1afad65 20c3d21 eac2dd1 37ad177 4f62b61 20c3d21 d688a46 1afad65 20c3d21 8c54fda 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 1afad65 20c3d21 4f62b61 20c3d21 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 37ad177 eac2dd1 4f62b61 37ad177 d688a46 98b60ee 6e11a5f 98b60ee 6e11a5f 98b60ee 6e11a5f 98b60ee 20c3d21 98b60ee 6e11a5f 98b60ee 20c3d21 98b60ee 20c3d21 4f62b61 20c3d21 98b60ee 20c3d21 98b60ee 6e11a5f 4f62b61 20c3d21 6e11a5f 20c3d21 98b60ee 6e11a5f 98b60ee 4f62b61 98b60ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 |
---
language:
- af
- de
- en
- fy
- gmw
- gos
- hrx
- lb
- nds
- nl
- pdc
- yi
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-base-gmw-gmw
results:
- task:
name: Translation afr-deu
type: translation
args: afr-deu
dataset:
name: flores101-devtest
type: flores_101
args: afr deu devtest
metrics:
- name: BLEU
type: bleu
value: 21.6
- task:
name: Translation afr-eng
type: translation
args: afr-eng
dataset:
name: flores101-devtest
type: flores_101
args: afr eng devtest
metrics:
- name: BLEU
type: bleu
value: 46.8
- task:
name: Translation deu-afr
type: translation
args: deu-afr
dataset:
name: flores101-devtest
type: flores_101
args: deu afr devtest
metrics:
- name: BLEU
type: bleu
value: 21.4
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: flores101-devtest
type: flores_101
args: deu eng devtest
metrics:
- name: BLEU
type: bleu
value: 33.8
- task:
name: Translation eng-afr
type: translation
args: eng-afr
dataset:
name: flores101-devtest
type: flores_101
args: eng afr devtest
metrics:
- name: BLEU
type: bleu
value: 33.8
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: flores101-devtest
type: flores_101
args: eng deu devtest
metrics:
- name: BLEU
type: bleu
value: 29.1
- task:
name: Translation eng-nld
type: translation
args: eng-nld
dataset:
name: flores101-devtest
type: flores_101
args: eng nld devtest
metrics:
- name: BLEU
type: bleu
value: 21.0
- task:
name: Translation nld-eng
type: translation
args: nld-eng
dataset:
name: flores101-devtest
type: flores_101
args: nld eng devtest
metrics:
- name: BLEU
type: bleu
value: 25.6
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 32.2
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 28.8
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: multi30k_test_2017_flickr
type: multi30k-2017_flickr
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 32.7
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: multi30k_test_2017_flickr
type: multi30k-2017_flickr
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 27.6
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: multi30k_test_2017_mscoco
type: multi30k-2017_mscoco
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 25.5
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: multi30k_test_2017_mscoco
type: multi30k-2017_mscoco
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 22.0
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 30.0
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 25.3
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: news-test2008
type: news-test2008
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 23.8
- task:
name: Translation afr-deu
type: translation
args: afr-deu
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: afr-deu
metrics:
- name: BLEU
type: bleu
value: 48.1
- task:
name: Translation afr-eng
type: translation
args: afr-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: afr-eng
metrics:
- name: BLEU
type: bleu
value: 58.8
- task:
name: Translation afr-nld
type: translation
args: afr-nld
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: afr-nld
metrics:
- name: BLEU
type: bleu
value: 54.5
- task:
name: Translation deu-afr
type: translation
args: deu-afr
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-afr
metrics:
- name: BLEU
type: bleu
value: 52.4
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 42.1
- task:
name: Translation deu-nld
type: translation
args: deu-nld
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: deu-nld
metrics:
- name: BLEU
type: bleu
value: 48.7
- task:
name: Translation eng-afr
type: translation
args: eng-afr
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-afr
metrics:
- name: BLEU
type: bleu
value: 56.5
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 35.9
- task:
name: Translation eng-nld
type: translation
args: eng-nld
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-nld
metrics:
- name: BLEU
type: bleu
value: 48.3
- task:
name: Translation fry-eng
type: translation
args: fry-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fry-eng
metrics:
- name: BLEU
type: bleu
value: 32.5
- task:
name: Translation fry-nld
type: translation
args: fry-nld
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fry-nld
metrics:
- name: BLEU
type: bleu
value: 43.1
- task:
name: Translation hrx-deu
type: translation
args: hrx-deu
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: hrx-deu
metrics:
- name: BLEU
type: bleu
value: 24.7
- task:
name: Translation hrx-eng
type: translation
args: hrx-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: hrx-eng
metrics:
- name: BLEU
type: bleu
value: 20.4
- task:
name: Translation ltz-deu
type: translation
args: ltz-deu
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ltz-deu
metrics:
- name: BLEU
type: bleu
value: 37.2
- task:
name: Translation ltz-eng
type: translation
args: ltz-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ltz-eng
metrics:
- name: BLEU
type: bleu
value: 32.4
- task:
name: Translation ltz-nld
type: translation
args: ltz-nld
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ltz-nld
metrics:
- name: BLEU
type: bleu
value: 39.3
- task:
name: Translation nds-deu
type: translation
args: nds-deu
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nds-deu
metrics:
- name: BLEU
type: bleu
value: 34.5
- task:
name: Translation nds-eng
type: translation
args: nds-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nds-eng
metrics:
- name: BLEU
type: bleu
value: 29.9
- task:
name: Translation nds-nld
type: translation
args: nds-nld
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nds-nld
metrics:
- name: BLEU
type: bleu
value: 42.3
- task:
name: Translation nld-afr
type: translation
args: nld-afr
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nld-afr
metrics:
- name: BLEU
type: bleu
value: 58.8
- task:
name: Translation nld-deu
type: translation
args: nld-deu
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nld-deu
metrics:
- name: BLEU
type: bleu
value: 50.4
- task:
name: Translation nld-eng
type: translation
args: nld-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nld-eng
metrics:
- name: BLEU
type: bleu
value: 53.1
- task:
name: Translation nld-fry
type: translation
args: nld-fry
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nld-fry
metrics:
- name: BLEU
type: bleu
value: 25.1
- task:
name: Translation nld-nds
type: translation
args: nld-nds
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nld-nds
metrics:
- name: BLEU
type: bleu
value: 21.4
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2009
type: wmt-2009-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 23.4
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2010
type: wmt-2010-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 25.8
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2010
type: wmt-2010-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 20.7
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2011
type: wmt-2011-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 23.7
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2012
type: wmt-2012-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 24.8
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2013
type: wmt-2013-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 27.7
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2013
type: wmt-2013-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 22.5
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2014-deen
type: wmt-2014-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 27.3
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2014-deen
type: wmt-2014-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 22.0
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2015-deen
type: wmt-2015-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 28.6
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2015-ende
type: wmt-2015-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 25.7
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2016-deen
type: wmt-2016-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 33.3
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2016-ende
type: wmt-2016-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 30.0
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2017-deen
type: wmt-2017-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 29.5
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2017-ende
type: wmt-2017-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 24.1
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2018-deen
type: wmt-2018-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 36.1
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2018-ende
type: wmt-2018-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 35.4
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2019-deen
type: wmt-2019-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 32.3
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2019-ende
type: wmt-2019-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 31.2
- task:
name: Translation deu-eng
type: translation
args: deu-eng
dataset:
name: newstest2020-deen
type: wmt-2020-news
args: deu-eng
metrics:
- name: BLEU
type: bleu
value: 32.0
- task:
name: Translation eng-deu
type: translation
args: eng-deu
dataset:
name: newstest2020-ende
type: wmt-2020-news
args: eng-deu
metrics:
- name: BLEU
type: bleu
value: 23.9
---
# opus-mt-tc-base-gmw-gmw
Neural machine translation model for translating from West Germanic languages (gmw) to West Germanic languages (gmw).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2021-02-23
* source language(s): afr deu eng fry gos hrx ltz nds nld pdc yid
* target language(s): afr deu eng fry nds nld
* valid target language labels: >>afr<< >>ang_Latn<< >>deu<< >>eng<< >>fry<< >>ltz<< >>nds<< >>nld<< >>sco<< >>yid<<
* model: transformer (base)
* data: opus ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opus-2021-02-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.zip)
* more information released models: [OPUS-MT gmw-gmw README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-gmw/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>afr<<`
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>nld<< You need help.",
">>afr<< I love your son."
]
model_name = "pytorch-models/opus-mt-tc-base-gmw-gmw"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Je hebt hulp nodig.
# Ek is lief vir jou seun.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-gmw-gmw")
print(pipe(>>nld<< You need help.))
# expected output: Je hebt hulp nodig.
```
## Benchmarks
* test set translations: [opus-2021-02-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.test.txt)
* test set scores: [opus-2021-02-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| afr-deu | tatoeba-test-v2021-08-07 | 0.674 | 48.1 | 1583 | 9105 |
| afr-eng | tatoeba-test-v2021-08-07 | 0.728 | 58.8 | 1374 | 9622 |
| afr-nld | tatoeba-test-v2021-08-07 | 0.711 | 54.5 | 1056 | 6710 |
| deu-afr | tatoeba-test-v2021-08-07 | 0.696 | 52.4 | 1583 | 9507 |
| deu-eng | tatoeba-test-v2021-08-07 | 0.609 | 42.1 | 17565 | 149462 |
| deu-nds | tatoeba-test-v2021-08-07 | 0.442 | 18.6 | 9999 | 76137 |
| deu-nld | tatoeba-test-v2021-08-07 | 0.672 | 48.7 | 10218 | 75235 |
| eng-afr | tatoeba-test-v2021-08-07 | 0.735 | 56.5 | 1374 | 10317 |
| eng-deu | tatoeba-test-v2021-08-07 | 0.580 | 35.9 | 17565 | 151568 |
| eng-nds | tatoeba-test-v2021-08-07 | 0.412 | 16.6 | 2500 | 18264 |
| eng-nld | tatoeba-test-v2021-08-07 | 0.663 | 48.3 | 12696 | 91796 |
| fry-eng | tatoeba-test-v2021-08-07 | 0.500 | 32.5 | 220 | 1573 |
| fry-nld | tatoeba-test-v2021-08-07 | 0.633 | 43.1 | 260 | 1854 |
| gos-nld | tatoeba-test-v2021-08-07 | 0.405 | 15.6 | 1852 | 9903 |
| hrx-deu | tatoeba-test-v2021-08-07 | 0.484 | 24.7 | 471 | 2805 |
| hrx-eng | tatoeba-test-v2021-08-07 | 0.362 | 20.4 | 221 | 1235 |
| ltz-deu | tatoeba-test-v2021-08-07 | 0.556 | 37.2 | 347 | 2208 |
| ltz-eng | tatoeba-test-v2021-08-07 | 0.485 | 32.4 | 293 | 1840 |
| ltz-nld | tatoeba-test-v2021-08-07 | 0.534 | 39.3 | 292 | 1685 |
| nds-deu | tatoeba-test-v2021-08-07 | 0.572 | 34.5 | 9999 | 74564 |
| nds-eng | tatoeba-test-v2021-08-07 | 0.493 | 29.9 | 2500 | 17589 |
| nds-nld | tatoeba-test-v2021-08-07 | 0.621 | 42.3 | 1657 | 11490 |
| nld-afr | tatoeba-test-v2021-08-07 | 0.755 | 58.8 | 1056 | 6823 |
| nld-deu | tatoeba-test-v2021-08-07 | 0.686 | 50.4 | 10218 | 74131 |
| nld-eng | tatoeba-test-v2021-08-07 | 0.690 | 53.1 | 12696 | 89978 |
| nld-fry | tatoeba-test-v2021-08-07 | 0.478 | 25.1 | 260 | 1857 |
| nld-nds | tatoeba-test-v2021-08-07 | 0.462 | 21.4 | 1657 | 11711 |
| afr-deu | flores101-devtest | 0.524 | 21.6 | 1012 | 25094 |
| afr-eng | flores101-devtest | 0.693 | 46.8 | 1012 | 24721 |
| afr-nld | flores101-devtest | 0.509 | 18.4 | 1012 | 25467 |
| deu-afr | flores101-devtest | 0.534 | 21.4 | 1012 | 25740 |
| deu-eng | flores101-devtest | 0.616 | 33.8 | 1012 | 24721 |
| deu-nld | flores101-devtest | 0.516 | 19.2 | 1012 | 25467 |
| eng-afr | flores101-devtest | 0.628 | 33.8 | 1012 | 25740 |
| eng-deu | flores101-devtest | 0.581 | 29.1 | 1012 | 25094 |
| eng-nld | flores101-devtest | 0.533 | 21.0 | 1012 | 25467 |
| ltz-afr | flores101-devtest | 0.430 | 12.9 | 1012 | 25740 |
| ltz-deu | flores101-devtest | 0.482 | 17.1 | 1012 | 25094 |
| ltz-eng | flores101-devtest | 0.468 | 18.8 | 1012 | 24721 |
| ltz-nld | flores101-devtest | 0.409 | 10.7 | 1012 | 25467 |
| nld-afr | flores101-devtest | 0.494 | 16.8 | 1012 | 25740 |
| nld-deu | flores101-devtest | 0.501 | 17.9 | 1012 | 25094 |
| nld-eng | flores101-devtest | 0.551 | 25.6 | 1012 | 24721 |
| deu-eng | multi30k_test_2016_flickr | 0.546 | 32.2 | 1000 | 12955 |
| eng-deu | multi30k_test_2016_flickr | 0.582 | 28.8 | 1000 | 12106 |
| deu-eng | multi30k_test_2017_flickr | 0.561 | 32.7 | 1000 | 11374 |
| eng-deu | multi30k_test_2017_flickr | 0.573 | 27.6 | 1000 | 10755 |
| deu-eng | multi30k_test_2017_mscoco | 0.499 | 25.5 | 461 | 5231 |
| eng-deu | multi30k_test_2017_mscoco | 0.514 | 22.0 | 461 | 5158 |
| deu-eng | multi30k_test_2018_flickr | 0.535 | 30.0 | 1071 | 14689 |
| eng-deu | multi30k_test_2018_flickr | 0.547 | 25.3 | 1071 | 13703 |
| deu-eng | newssyscomb2009 | 0.527 | 25.4 | 502 | 11818 |
| eng-deu | newssyscomb2009 | 0.504 | 19.3 | 502 | 11271 |
| deu-eng | news-test2008 | 0.518 | 23.8 | 2051 | 49380 |
| eng-deu | news-test2008 | 0.492 | 19.3 | 2051 | 47447 |
| deu-eng | newstest2009 | 0.516 | 23.4 | 2525 | 65399 |
| eng-deu | newstest2009 | 0.498 | 18.8 | 2525 | 62816 |
| deu-eng | newstest2010 | 0.546 | 25.8 | 2489 | 61711 |
| eng-deu | newstest2010 | 0.508 | 20.7 | 2489 | 61503 |
| deu-eng | newstest2011 | 0.524 | 23.7 | 3003 | 74681 |
| eng-deu | newstest2011 | 0.493 | 19.2 | 3003 | 72981 |
| deu-eng | newstest2012 | 0.532 | 24.8 | 3003 | 72812 |
| eng-deu | newstest2012 | 0.493 | 19.5 | 3003 | 72886 |
| deu-eng | newstest2013 | 0.548 | 27.7 | 3000 | 64505 |
| eng-deu | newstest2013 | 0.517 | 22.5 | 3000 | 63737 |
| deu-eng | newstest2014-deen | 0.548 | 27.3 | 3003 | 67337 |
| eng-deu | newstest2014-deen | 0.532 | 22.0 | 3003 | 62688 |
| deu-eng | newstest2015-deen | 0.553 | 28.6 | 2169 | 46443 |
| eng-deu | newstest2015-ende | 0.544 | 25.7 | 2169 | 44260 |
| deu-eng | newstest2016-deen | 0.596 | 33.3 | 2999 | 64119 |
| eng-deu | newstest2016-ende | 0.580 | 30.0 | 2999 | 62669 |
| deu-eng | newstest2017-deen | 0.561 | 29.5 | 3004 | 64399 |
| eng-deu | newstest2017-ende | 0.535 | 24.1 | 3004 | 61287 |
| deu-eng | newstest2018-deen | 0.610 | 36.1 | 2998 | 67012 |
| eng-deu | newstest2018-ende | 0.613 | 35.4 | 2998 | 64276 |
| deu-eng | newstest2019-deen | 0.582 | 32.3 | 2000 | 39227 |
| eng-deu | newstest2019-ende | 0.583 | 31.2 | 1997 | 48746 |
| deu-eng | newstest2020-deen | 0.604 | 32.0 | 785 | 38220 |
| eng-deu | newstest2020-ende | 0.542 | 23.9 | 1418 | 52383 |
| deu-eng | newstestB2020-deen | 0.598 | 31.2 | 785 | 37696 |
| eng-deu | newstestB2020-ende | 0.532 | 23.3 | 1418 | 53092 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.12.3
* OPUS-MT git hash: e56a06b
* port time: Sun Feb 13 14:42:10 EET 2022
* port machine: LM0-400-22516.local
|