File size: 30,845 Bytes
bd13aff ad19d20 bd13aff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
---
library_name: transformers
language:
- bas
- bem
- bnt
- bss
- cce
- cjk
- cwe
- de
- dig
- dug
- en
- es
- fr
- gog
- gwr
- hay
- heh
- hz
- jmc
- kam
- kdc
- kdn
- kg
- ki
- kj
- kki
- kkj
- kmb
- ksb
- lem
- lg
- ln
- lon
- lsm
- lua
- luy
- mcp
- myx
- nd
- ng
- nim
- nnb
- nr
- nso
- nuj
- ny
- nyf
- nyn
- nyo
- nyy
- old
- ozm
- pkb
- pt
- rim
- rn
- rw
- seh
- sn
- ss
- st
- suk
- sw
- sxb
- thk
- tlj
- tn
- toh
- toi
- ts
- tum
- umb
- ve
- vmw
- vun
- wmw
- xh
- xog
- zu
tags:
- translation
- opus-mt-tc-bible
license: apache-2.0
model-index:
- name: opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt
results:
- task:
name: Translation deu-tsn
type: translation
args: deu-tsn
dataset:
name: flores200-devtest
type: flores200-devtest
args: deu-tsn
metrics:
- name: BLEU
type: bleu
value: 11.9
- name: chr-F
type: chrf
value: 0.39738
- task:
name: Translation eng-kin
type: translation
args: eng-kin
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-kin
metrics:
- name: BLEU
type: bleu
value: 11.1
- name: chr-F
type: chrf
value: 0.41492
- task:
name: Translation eng-lin
type: translation
args: eng-lin
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-lin
metrics:
- name: BLEU
type: bleu
value: 14.7
- name: chr-F
type: chrf
value: 0.45568
- task:
name: Translation eng-nso
type: translation
args: eng-nso
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-nso
metrics:
- name: BLEU
type: bleu
value: 20.8
- name: chr-F
type: chrf
value: 0.48626
- task:
name: Translation eng-nya
type: translation
args: eng-nya
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-nya
metrics:
- name: BLEU
type: bleu
value: 10.7
- name: chr-F
type: chrf
value: 0.45067
- task:
name: Translation eng-sna
type: translation
args: eng-sna
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-sna
metrics:
- name: BLEU
type: bleu
value: 10.1
- name: chr-F
type: chrf
value: 0.45629
- task:
name: Translation eng-sot
type: translation
args: eng-sot
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-sot
metrics:
- name: BLEU
type: bleu
value: 15.4
- name: chr-F
type: chrf
value: 0.45331
- task:
name: Translation eng-tsn
type: translation
args: eng-tsn
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-tsn
metrics:
- name: BLEU
type: bleu
value: 17.7
- name: chr-F
type: chrf
value: 0.45233
- task:
name: Translation eng-tso
type: translation
args: eng-tso
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-tso
metrics:
- name: BLEU
type: bleu
value: 18.3
- name: chr-F
type: chrf
value: 0.48529
- task:
name: Translation eng-xho
type: translation
args: eng-xho
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-xho
metrics:
- name: BLEU
type: bleu
value: 13.1
- name: chr-F
type: chrf
value: 0.51974
- task:
name: Translation eng-zul
type: translation
args: eng-zul
dataset:
name: flores200-devtest
type: flores200-devtest
args: eng-zul
metrics:
- name: BLEU
type: bleu
value: 14.0
- name: chr-F
type: chrf
value: 0.53320
- task:
name: Translation fra-lin
type: translation
args: fra-lin
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-lin
metrics:
- name: BLEU
type: bleu
value: 13.0
- name: chr-F
type: chrf
value: 0.44410
- task:
name: Translation fra-tsn
type: translation
args: fra-tsn
dataset:
name: flores200-devtest
type: flores200-devtest
args: fra-tsn
metrics:
- name: BLEU
type: bleu
value: 12.0
- name: chr-F
type: chrf
value: 0.39823
- task:
name: Translation por-lin
type: translation
args: por-lin
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-lin
metrics:
- name: BLEU
type: bleu
value: 11.7
- name: chr-F
type: chrf
value: 0.42944
- task:
name: Translation por-tsn
type: translation
args: por-tsn
dataset:
name: flores200-devtest
type: flores200-devtest
args: por-tsn
metrics:
- name: BLEU
type: bleu
value: 10.5
- name: chr-F
type: chrf
value: 0.37629
- task:
name: Translation eng-lin
type: translation
args: eng-lin
dataset:
name: flores101-devtest
type: flores_101
args: eng lin devtest
metrics:
- name: BLEU
type: bleu
value: 13.2
- name: chr-F
type: chrf
value: 0.43748
- task:
name: Translation eng-nso
type: translation
args: eng-nso
dataset:
name: flores101-devtest
type: flores_101
args: eng nso devtest
metrics:
- name: BLEU
type: bleu
value: 19.4
- name: chr-F
type: chrf
value: 0.47122
- task:
name: Translation eng-xho
type: translation
args: eng-xho
dataset:
name: flores101-devtest
type: flores_101
args: eng xho devtest
metrics:
- name: BLEU
type: bleu
value: 11.6
- name: chr-F
type: chrf
value: 0.50110
- task:
name: Translation por-lin
type: translation
args: por-lin
dataset:
name: flores101-devtest
type: flores_101
args: por lin devtest
metrics:
- name: BLEU
type: bleu
value: 10.7
- name: chr-F
type: chrf
value: 0.41675
- task:
name: Translation deu-swa
type: translation
args: deu-swa
dataset:
name: ntrex128
type: ntrex128
args: deu-swa
metrics:
- name: BLEU
type: bleu
value: 18.0
- name: chr-F
type: chrf
value: 0.48979
- task:
name: Translation deu-tsn
type: translation
args: deu-tsn
dataset:
name: ntrex128
type: ntrex128
args: deu-tsn
metrics:
- name: BLEU
type: bleu
value: 15.4
- name: chr-F
type: chrf
value: 0.41894
- task:
name: Translation eng-kin
type: translation
args: eng-kin
dataset:
name: ntrex128
type: ntrex128
args: eng-kin
metrics:
- name: BLEU
type: bleu
value: 10.5
- name: chr-F
type: chrf
value: 0.39546
- task:
name: Translation eng-nya
type: translation
args: eng-nya
dataset:
name: ntrex128
type: ntrex128
args: eng-nya
metrics:
- name: BLEU
type: bleu
value: 14.9
- name: chr-F
type: chrf
value: 0.46801
- task:
name: Translation eng-swa
type: translation
args: eng-swa
dataset:
name: ntrex128
type: ntrex128
args: eng-swa
metrics:
- name: BLEU
type: bleu
value: 33.4
- name: chr-F
type: chrf
value: 0.60117
- task:
name: Translation eng-tsn
type: translation
args: eng-tsn
dataset:
name: ntrex128
type: ntrex128
args: eng-tsn
metrics:
- name: BLEU
type: bleu
value: 22.2
- name: chr-F
type: chrf
value: 0.46599
- task:
name: Translation eng-xho
type: translation
args: eng-xho
dataset:
name: ntrex128
type: ntrex128
args: eng-xho
metrics:
- name: BLEU
type: bleu
value: 11.2
- name: chr-F
type: chrf
value: 0.48847
- task:
name: Translation eng-zul
type: translation
args: eng-zul
dataset:
name: ntrex128
type: ntrex128
args: eng-zul
metrics:
- name: BLEU
type: bleu
value: 10.7
- name: chr-F
type: chrf
value: 0.49764
- task:
name: Translation fra-swa
type: translation
args: fra-swa
dataset:
name: ntrex128
type: ntrex128
args: fra-swa
metrics:
- name: BLEU
type: bleu
value: 17.5
- name: chr-F
type: chrf
value: 0.45494
- task:
name: Translation fra-tsn
type: translation
args: fra-tsn
dataset:
name: ntrex128
type: ntrex128
args: fra-tsn
metrics:
- name: BLEU
type: bleu
value: 15.3
- name: chr-F
type: chrf
value: 0.41426
- task:
name: Translation por-swa
type: translation
args: por-swa
dataset:
name: ntrex128
type: ntrex128
args: por-swa
metrics:
- name: BLEU
type: bleu
value: 18.0
- name: chr-F
type: chrf
value: 0.46465
- task:
name: Translation por-tsn
type: translation
args: por-tsn
dataset:
name: ntrex128
type: ntrex128
args: por-tsn
metrics:
- name: BLEU
type: bleu
value: 14.5
- name: chr-F
type: chrf
value: 0.40236
- task:
name: Translation spa-swa
type: translation
args: spa-swa
dataset:
name: ntrex128
type: ntrex128
args: spa-swa
metrics:
- name: BLEU
type: bleu
value: 18.1
- name: chr-F
type: chrf
value: 0.46670
- task:
name: Translation spa-tsn
type: translation
args: spa-tsn
dataset:
name: ntrex128
type: ntrex128
args: spa-tsn
metrics:
- name: BLEU
type: bleu
value: 14.2
- name: chr-F
type: chrf
value: 0.40263
- task:
name: Translation eng-swa
type: translation
args: eng-swa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-swa
metrics:
- name: BLEU
type: bleu
value: 32.7
- name: chr-F
type: chrf
value: 0.60298
- task:
name: Translation eng-kin
type: translation
args: eng-kin
dataset:
name: tico19-test
type: tico19-test
args: eng-kin
metrics:
- name: BLEU
type: bleu
value: 11.3
- name: chr-F
type: chrf
value: 0.40952
- task:
name: Translation eng-lin
type: translation
args: eng-lin
dataset:
name: tico19-test
type: tico19-test
args: eng-lin
metrics:
- name: BLEU
type: bleu
value: 15.5
- name: chr-F
type: chrf
value: 0.44670
- task:
name: Translation eng-lug
type: translation
args: eng-lug
dataset:
name: tico19-test
type: tico19-test
args: eng-lug
metrics:
- name: BLEU
type: bleu
value: 10.9
- name: chr-F
type: chrf
value: 0.38546
- task:
name: Translation eng-swa
type: translation
args: eng-swa
dataset:
name: tico19-test
type: tico19-test
args: eng-swa
metrics:
- name: BLEU
type: bleu
value: 28.0
- name: chr-F
type: chrf
value: 0.56798
- task:
name: Translation eng-zul
type: translation
args: eng-zul
dataset:
name: tico19-test
type: tico19-test
args: eng-zul
metrics:
- name: BLEU
type: bleu
value: 14.4
- name: chr-F
type: chrf
value: 0.53624
- task:
name: Translation fra-lin
type: translation
args: fra-lin
dataset:
name: tico19-test
type: tico19-test
args: fra-lin
metrics:
- name: BLEU
type: bleu
value: 12.0
- name: chr-F
type: chrf
value: 0.39748
- task:
name: Translation fra-swa
type: translation
args: fra-swa
dataset:
name: tico19-test
type: tico19-test
args: fra-swa
metrics:
- name: BLEU
type: bleu
value: 16.8
- name: chr-F
type: chrf
value: 0.44926
- task:
name: Translation por-lin
type: translation
args: por-lin
dataset:
name: tico19-test
type: tico19-test
args: por-lin
metrics:
- name: BLEU
type: bleu
value: 12.5
- name: chr-F
type: chrf
value: 0.41729
- task:
name: Translation por-swa
type: translation
args: por-swa
dataset:
name: tico19-test
type: tico19-test
args: por-swa
metrics:
- name: BLEU
type: bleu
value: 19.6
- name: chr-F
type: chrf
value: 0.49303
- task:
name: Translation spa-lin
type: translation
args: spa-lin
dataset:
name: tico19-test
type: tico19-test
args: spa-lin
metrics:
- name: BLEU
type: bleu
value: 12.1
- name: chr-F
type: chrf
value: 0.41645
- task:
name: Translation spa-swa
type: translation
args: spa-swa
dataset:
name: tico19-test
type: tico19-test
args: spa-swa
metrics:
- name: BLEU
type: bleu
value: 18.8
- name: chr-F
type: chrf
value: 0.48614
---
# opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from unknown (deu+eng+fra+por+spa) to Bantu languages (bnt).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2024-05-30
- **License:** Apache-2.0
- **Language(s):**
- Source Language(s): deu eng fra por spa
- Target Language(s): bas bem bnt bss cce cjk cwe dig dug gog gwr hay heh her jmc kam kdc kdn kik kin kki kkj kmb kng kon ksb kua ldi lem lin lon lsm lua lug luy mcp myx nbl nde ndo nim nnb nso nuj nya nyf nyn nyo nyy old ozm pkb rim run seh sna sot ssw suk swa swc swh sxb thk tlj toh toi tsn tso tum umb ven vmw vun wmw xho xog zul
- Valid Target Language Labels: >>abb<< >>agh<< >>akw<< >>asa<< >>auh<< >>axk<< >>baf<< >>bag<< >>bas<< >>bbg<< >>bbi<< >>bbm<< >>bcp<< >>bdp<< >>bdu<< >>beb<< >>bem<< >>beq<< >>bez<< >>bhy<< >>bip<< >>biw<< >>biz<< >>bja<< >>bkf<< >>bkh<< >>bkj<< >>bkp<< >>bkt<< >>bkw<< >>bli<< >>blv<< >>bmb<< >>bmg<< >>bml<< >>bmw<< >>bng<< >>bni<< >>bnm<< >>bnt_Latn<< >>bnx<< >>boh<< >>bok<< >>bou<< >>boy<< >>bpj<< >>bqm<< >>bqu<< >>bqz<< >>brf<< >>bri<< >>brl<< >>bsi<< >>bss<< >>btb<< >>btc<< >>buf<< >>bui<< >>bum<< >>buu<< >>buw<< >>bvb<< >>bvg<< >>bvx<< >>bwc<< >>bwg<< >>bwl<< >>bws<< >>bwt<< >>bww<< >>bwz<< >>bxc<< >>bxg<< >>bxp<< >>byi<< >>bzm<< >>bzo<< >>cce<< >>ccl<< >>cgg<< >>chw<< >>cjk<< >>cjk_Latn<< >>coh<< >>cuh<< >>cwa<< >>cwb<< >>cwe<< >>dav<< >>dde<< >>dez<< >>dhm<< >>dhs<< >>dig<< >>dii<< >>diu<< >>diz<< >>dma<< >>dmx<< >>dne<< >>doe<< >>dov<< >>dua<< >>dug<< >>dzn<< >>ebo<< >>ebu<< >>ekm<< >>eko<< >>eto<< >>ewo<< >>fan<< >>fip<< >>flr<< >>fwe<< >>gev<< >>gey<< >>gmx<< >>gog<< >>guz<< >>gwe<< >>gwr<< >>gyi<< >>han<< >>haq<< >>hav<< >>hay<< >>hba<< >>heh<< >>hem<< >>her<< >>hij<< >>hka<< >>hke<< >>hol<< >>hom<< >>hoo<< >>hum<< >>ifm<< >>ikz<< >>ilb<< >>isn<< >>iyx<< >>jgb<< >>jit<< >>jmc<< >>job<< >>kam<< >>kbj<< >>kbs<< >>kck<< >>kcu<< >>kcv<< >>kcw<< >>kcz<< >>kdc<< >>kde<< >>kdg<< >>kdn<< >>keb<< >>ked<< >>khu<< >>khx<< >>khy<< >>kik<< >>kin<< >>kiv<< >>kiz<< >>kki<< >>kkj<< >>kkq<< >>kkw<< >>kmb<< >>kme<< >>kmw<< >>kng<< >>kny<< >>koh<< >>kon<< >>koo<< >>koq<< >>kqn<< >>ksb<< >>ksf<< >>ksv<< >>ktf<< >>ktu<< >>kty<< >>kua<< >>kuj<< >>kwc<< >>kwm<< >>kwn<< >>kws<< >>kwu<< >>kxx<< >>kya<< >>kzn<< >>kzo<< >>kzy<< >>lag<< >>lai<< >>lam<< >>lch<< >>ldi<< >>lea<< >>leb<< >>leh<< >>lej<< >>lel<< >>lem<< >>leo<< >>lfa<< >>lgm<< >>lgz<< >>lie<< >>lik<< >>lin<< >>liz<< >>lke<< >>llb<< >>lli<< >>lnb<< >>lol<< >>lon<< >>loo<< >>loq<< >>loz<< >>lse<< >>lsm<< >>lua<< >>lub<< >>lue<< >>lug<< >>luj<< >>lum<< >>lun<< >>lup<< >>luy<< >>lwa<< >>lyn<< >>mbm<< >>mbo<< >>mck<< >>mcp<< >>mcx<< >>mdn<< >>mdp<< >>mdq<< >>mdt<< >>mdu<< >>mdw<< >>mer<< >>mfu<< >>mgg<< >>mgh<< >>mgq<< >>mgr<< >>mgs<< >>mgv<< >>mgw<< >>mgy<< >>mgz<< >>mhb<< >>mhm<< >>mho<< >>mhw<< >>mjh<< >>mkk<< >>mkw<< >>mlb<< >>mlk<< >>mmu<< >>mmz<< >>mny<< >>mow<< >>mpa<< >>mvw<< >>mwe<< >>mwn<< >>mws<< >>mwz<< >>mxc<< >>mxg<< >>mxo<< >>myc<< >>mye<< >>myx<< >>mzd<< >>nba<< >>nbd<< >>nbl<< >>nda<< >>ndc<< >>nde<< >>ndg<< >>ndh<< >>ndj<< >>ndk<< >>ndl<< >>ndn<< >>ndo<< >>ndq<< >>ndw<< >>ngc<< >>ngd<< >>ngl<< >>ngo<< >>ngp<< >>ngq<< >>ngy<< >>ngz<< >>nih<< >>nim<< >>nix<< >>njx<< >>njy<< >>nka<< >>nkc<< >>nkn<< >>nkt<< >>nkv<< >>nkw<< >>nlj<< >>nlo<< >>nmd<< >>nmg<< >>nmq<< >>nnb<< >>nnb_Latn<< >>nne<< >>nnq<< >>noq<< >>now<< >>nql<< >>nra<< >>nse<< >>nso<< >>nsx<< >>nte<< >>ntk<< >>nto<< >>nui<< >>nuj<< >>nvo<< >>nxd<< >>nxi<< >>nxo<< >>nya<< >>nyc<< >>nye<< >>nyf<< >>nyg<< >>nyj<< >>nyk<< >>nym<< >>nyn<< >>nyo<< >>nyr<< >>nyu<< >>nyy<< >>nzb<< >>nzd<< >>old<< >>olu<< >>oml<< >>ozm<< >>pae<< >>pbr<< >>pem<< >>phm<< >>pic<< >>piw<< >>pkb<< >>pmm<< >>pof<< >>poy<< >>puu<< >>reg<< >>rim<< >>rnd<< >>rng<< >>rnw<< >>rof<< >>rub<< >>ruc<< >>ruf<< >>run<< >>rwk<< >>rwm<< >>sak<< >>sbk<< >>sbm<< >>sbp<< >>sbs<< >>sbw<< >>sby<< >>sdj<< >>seg<< >>seh<< >>sgm<< >>shc<< >>shq<< >>shr<< >>sie<< >>skt<< >>slx<< >>smd<< >>smx<< >>sna<< >>sng<< >>snq<< >>soc<< >>sod<< >>soe<< >>soo<< >>sop<< >>sot<< >>sox<< >>soz<< >>ssc<< >>ssw<< >>sub<< >>suj<< >>suk<< >>suw<< >>swa<< >>swb<< >>swc<< >>swh<< >>swj<< >>swk<< >>sxb<< >>sxe<< >>syi<< >>syx<< >>szg<< >>szv<< >>tap<< >>tbt<< >>tck<< >>teg<< >>tek<< >>tga<< >>thk<< >>tii<< >>tke<< >>tlj<< >>tll<< >>tmv<< >>tny<< >>tog<< >>toh<< >>toi<< >>toi_Latn<< >>tsa<< >>tsc<< >>tsn<< >>tso<< >>tsv<< >>ttf<< >>ttj<< >>ttl<< >>tum<< >>tvs<< >>tvu<< >>twl<< >>two<< >>twx<< >>tyi<< >>tyx<< >>ukh<< >>umb<< >>vau<< >>ven<< >>vid<< >>vif<< >>vin<< >>vmk<< >>vmr<< >>vmw<< >>vum<< >>vun<< >>wbh<< >>wbi<< >>wdd<< >>wlc<< >>wmw<< >>wni<< >>won<< >>wum<< >>wun<< >>xdo<< >>xho<< >>xku<< >>xkv<< >>xma<< >>xmc<< >>xog<< >>xsq<< >>yaf<< >>yao<< >>yas<< >>yat<< >>yav<< >>yel<< >>yey<< >>yko<< >>ymk<< >>yns<< >>yom<< >>zaj<< >>zak<< >>zdj<< >>zga<< >>zin<< >>zmb<< >>zmf<< >>zmn<< >>zmp<< >>zmq<< >>zms<< >>zmw<< >>zmx<< >>zul<<
- **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-bnt/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
- **Resources for more information:**
- [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-bnt/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
- [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
- [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bas<<`
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>bas<< Replace this with text in an accepted source language.",
">>zul<< This is the second sentence."
]
model_name = "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt")
print(pipe(">>bas<< Replace this with text in an accepted source language."))
```
## Training
- **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-bnt/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-bnt/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
* test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-bnt/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
* test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-bnt/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-run | tatoeba-test-v2021-08-07 | 0.44207 | 11.8 | 1703 | 6710 |
| eng-swa | tatoeba-test-v2021-08-07 | 0.60298 | 32.7 | 387 | 1888 |
| fra-run | tatoeba-test-v2021-08-07 | 0.42664 | 11.2 | 1274 | 5081 |
| spa-run | tatoeba-test-v2021-08-07 | 0.41921 | 10.5 | 963 | 3886 |
| eng-lin | flores101-devtest | 0.43748 | 13.2 | 1012 | 26769 |
| eng-nso | flores101-devtest | 0.47122 | 19.4 | 1012 | 31298 |
| eng-sna | flores101-devtest | 0.44294 | 9.4 | 1012 | 20105 |
| eng-xho | flores101-devtest | 0.50110 | 11.6 | 1012 | 18227 |
| fra-sna | flores101-devtest | 0.40676 | 6.2 | 1012 | 20105 |
| por-lin | flores101-devtest | 0.41675 | 10.7 | 1012 | 26769 |
| spa-lin | flores101-devtest | 0.40631 | 8.8 | 1012 | 26769 |
| deu-lin | flores200-devtest | 0.40763 | 9.9 | 1012 | 26769 |
| deu-xho | flores200-devtest | 0.40586 | 4.8 | 1012 | 18227 |
| eng-kin | flores200-devtest | 0.41492 | 11.1 | 1012 | 22774 |
| eng-lin | flores200-devtest | 0.45568 | 14.7 | 1012 | 26769 |
| eng-nso | flores200-devtest | 0.48626 | 20.8 | 1012 | 31298 |
| eng-nya | flores200-devtest | 0.45067 | 10.7 | 1012 | 22180 |
| eng-sna | flores200-devtest | 0.45629 | 10.1 | 1012 | 20105 |
| eng-sot | flores200-devtest | 0.45331 | 15.4 | 1012 | 31600 |
| eng-ssw | flores200-devtest | 0.43635 | 7.1 | 1012 | 18508 |
| eng-tsn | flores200-devtest | 0.45233 | 17.7 | 1012 | 33831 |
| eng-tso | flores200-devtest | 0.48529 | 18.3 | 1012 | 29548 |
| eng-xho | flores200-devtest | 0.51974 | 13.1 | 1012 | 18227 |
| eng-zul | flores200-devtest | 0.53320 | 14.0 | 1012 | 18556 |
| fra-lin | flores200-devtest | 0.44410 | 13.0 | 1012 | 26769 |
| fra-sna | flores200-devtest | 0.42053 | 6.9 | 1012 | 20105 |
| fra-xho | flores200-devtest | 0.44537 | 7.1 | 1012 | 18227 |
| fra-zul | flores200-devtest | 0.41291 | 5.7 | 1012 | 18556 |
| por-lin | flores200-devtest | 0.42944 | 11.7 | 1012 | 26769 |
| por-xho | flores200-devtest | 0.41363 | 5.8 | 1012 | 18227 |
| spa-lin | flores200-devtest | 0.41938 | 9.4 | 1012 | 26769 |
| deu-swa | ntrex128 | 0.48979 | 18.0 | 1997 | 46859 |
| deu-tsn | ntrex128 | 0.41894 | 15.4 | 1997 | 71271 |
| eng-nya | ntrex128 | 0.46801 | 14.9 | 1997 | 43727 |
| eng-ssw | ntrex128 | 0.42880 | 6.7 | 1997 | 36169 |
| eng-swa | ntrex128 | 0.60117 | 33.4 | 1997 | 46859 |
| eng-tsn | ntrex128 | 0.46599 | 22.2 | 1997 | 71271 |
| eng-xho | ntrex128 | 0.48847 | 11.2 | 1997 | 35439 |
| eng-zul | ntrex128 | 0.49764 | 10.7 | 1997 | 34438 |
| fra-swa | ntrex128 | 0.45494 | 17.5 | 1997 | 46859 |
| fra-tsn | ntrex128 | 0.41426 | 15.3 | 1997 | 71271 |
| fra-xho | ntrex128 | 0.41206 | 5.2 | 1997 | 35439 |
| por-swa | ntrex128 | 0.46465 | 18.0 | 1997 | 46859 |
| por-tsn | ntrex128 | 0.40236 | 14.5 | 1997 | 71271 |
| por-xho | ntrex128 | 0.40070 | 5.0 | 1997 | 35439 |
| spa-swa | ntrex128 | 0.46670 | 18.1 | 1997 | 46859 |
| spa-tsn | ntrex128 | 0.40263 | 14.2 | 1997 | 71271 |
| spa-xho | ntrex128 | 0.40247 | 4.9 | 1997 | 35439 |
| eng-kin | tico19-test | 0.40952 | 11.3 | 2100 | 55034 |
| eng-lin | tico19-test | 0.44670 | 15.5 | 2100 | 61116 |
| eng-swa | tico19-test | 0.56798 | 28.0 | 2100 | 58846 |
| eng-zul | tico19-test | 0.53624 | 14.4 | 2100 | 44098 |
| fra-swa | tico19-test | 0.44926 | 16.8 | 2100 | 58846 |
| fra-zul | tico19-test | 0.40588 | 6.0 | 2100 | 44098 |
| por-lin | tico19-test | 0.41729 | 12.5 | 2100 | 61116 |
| por-swa | tico19-test | 0.49303 | 19.6 | 2100 | 58846 |
| spa-lin | tico19-test | 0.41645 | 12.1 | 2100 | 61116 |
| spa-swa | tico19-test | 0.48614 | 18.8 | 2100 | 58846 |
| spa-zul | tico19-test | 0.40058 | 5.3 | 2100 | 44098 |
## Citation Information
* Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```bibtex
@article{tiedemann2023democratizing,
title={Democratizing neural machine translation with {OPUS-MT}},
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
journal={Language Resources and Evaluation},
number={58},
pages={713--755},
year={2023},
publisher={Springer Nature},
issn={1574-0218},
doi={10.1007/s10579-023-09704-w}
}
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
## Model conversion info
* transformers version: 4.45.1
* OPUS-MT git hash: 0882077
* port time: Tue Oct 8 09:00:33 EEST 2024
* port machine: LM0-400-22516.local
|