DiffusionDet / modeling_diffusiondet.py
HichTala's picture
Update modeling_diffusiondet.py
e396659 verified
import math
import random
from collections import namedtuple, OrderedDict
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import ops
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
from transformers import PreTrainedModel
import wandb
from transformers.utils.backbone_utils import load_backbone
from .configuration_diffusiondet import DiffusionDetConfig
from .head import HeadDynamicK
from .loss import CriterionDynamicK
from transformers.utils import ModelOutput
ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
def default(val, d):
if val is not None:
return val
return d() if callable(d) else d
def extract(a, t, x_shape):
"""extract the appropriate t index for a batch of indices"""
batch_size = t.shape[0]
out = a.gather(-1, t)
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1)))
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
@dataclass
class DiffusionDetOutput(ModelOutput):
"""
Output type of DiffusionDet.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
labels: torch.IntTensor = None
pred_boxes: torch.FloatTensor = None
class DiffusionDet(PreTrainedModel):
"""
Implement DiffusionDet
"""
config_class = DiffusionDetConfig
main_input_name = "pixel_values"
def __init__(self, config):
super(DiffusionDet, self).__init__(config)
self.in_features = config.roi_head_in_features
self.num_classes = config.num_labels
self.num_proposals = config.num_proposals
self.num_heads = config.num_heads
self.backbone = load_backbone(config)
self.fpn = FeaturePyramidNetwork(
in_channels_list=self.backbone.channels,
out_channels=config.fpn_out_channels,
# extra_blocks=LastLevelMaxPool(),
)
# build diffusion
betas = cosine_beta_schedule(1000)
alphas_cumprod = torch.cumprod(1 - betas, dim=0)
timesteps, = betas.shape
sampling_timesteps = config.sample_step
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
self.num_timesteps = int(timesteps)
self.sampling_timesteps = default(sampling_timesteps, timesteps)
self.ddim_sampling_eta = 1.
self.scale = config.snr_scale
assert self.sampling_timesteps <= timesteps
roi_input_shape = {
'p2': {'stride': 4},
'p3': {'stride': 8},
'p4': {'stride': 16},
'p5': {'stride': 32},
'p6': {'stride': 64}
}
self.head = HeadDynamicK(config, roi_input_shape=roi_input_shape)
self.deep_supervision = config.deep_supervision
self.use_focal = config.use_focal
self.use_fed_loss = config.use_fed_loss
self.use_nms = config.use_nms
weight_dict = {
"loss_ce": config.class_weight, "loss_bbox": config.l1_weight, "loss_giou": config.giou_weight
}
if self.deep_supervision:
aux_weight_dict = {}
for i in range(self.num_heads - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
self.criterion = CriterionDynamicK(config, num_classes=self.num_classes, weight_dict=weight_dict)
def _init_weights(self, module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
torch.nn.init.kaiming_normal_(module.weight, mode='fan_in', nonlinearity='relu')
if module.bias is not None:
torch.nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.BatchNorm2d):
torch.nn.init.constant_(module.weight, 1)
torch.nn.init.constant_(module.bias, 0)
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) /
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def model_predictions(self, backbone_feats, images_whwh, x, t):
x_boxes = torch.clamp(x, min=-1 * self.scale, max=self.scale)
x_boxes = ((x_boxes / self.scale) + 1) / 2
x_boxes = ops.box_convert(x_boxes, 'cxcywh', 'xyxy')
x_boxes = x_boxes * images_whwh[:, None, :]
outputs_class, outputs_coord = self.head(backbone_feats, x_boxes, t)
x_start = outputs_coord[-1] # (batch, num_proposals, 4) predict boxes: absolute coordinates (x1, y1, x2, y2)
x_start = x_start / images_whwh[:, None, :]
x_start = ops.box_convert(x_start, 'xyxy', 'cxcywh')
x_start = (x_start * 2 - 1.) * self.scale
x_start = torch.clamp(x_start, min=-1 * self.scale, max=self.scale)
pred_noise = self.predict_noise_from_start(x, t, x_start)
return ModelPrediction(pred_noise, x_start), outputs_class, outputs_coord
@torch.no_grad()
def ddim_sample(self, batched_inputs, backbone_feats, images_whwh):
bs = len(batched_inputs)
image_sizes = batched_inputs.shape
shape = (bs, self.num_proposals, 4)
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
times = torch.linspace(-1, self.num_timesteps - 1, steps=self.sampling_timesteps + 1)
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
img = torch.randn(shape, device=self.device)
ensemble_score, ensemble_label, ensemble_coord = [], [], []
outputs_class, outputs_coord = None, None
for time, time_next in time_pairs:
time_cond = torch.full((bs,), time, device=self.device, dtype=torch.long)
preds, outputs_class, outputs_coord = self.model_predictions(backbone_feats, images_whwh, img, time_cond)
pred_noise, x_start = preds.pred_noise, preds.pred_x_start
score_per_image, box_per_image = outputs_class[-1][0], outputs_coord[-1][0]
threshold = 0.5
score_per_image = torch.sigmoid(score_per_image)
value, _ = torch.max(score_per_image, -1, keepdim=False)
keep_idx = value > threshold
num_remain = torch.sum(keep_idx)
pred_noise = pred_noise[:, keep_idx, :]
x_start = x_start[:, keep_idx, :]
img = img[:, keep_idx, :]
if time_next < 0:
img = x_start
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = self.ddim_sampling_eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(img)
img = x_start * alpha_next.sqrt() + \
c * pred_noise + \
sigma * noise
img = torch.cat((img, torch.randn(1, self.num_proposals - num_remain, 4, device=img.device)), dim=1)
if self.sampling_timesteps > 1:
box_pred_per_image, scores_per_image, labels_per_image = self.inference(outputs_class[-1],
outputs_coord[-1])
ensemble_score.append(scores_per_image)
ensemble_label.append(labels_per_image)
ensemble_coord.append(box_pred_per_image)
if self.sampling_timesteps > 1:
box_pred_per_image = torch.cat(ensemble_coord, dim=0)
scores_per_image = torch.cat(ensemble_score, dim=0)
labels_per_image = torch.cat(ensemble_label, dim=0)
if self.use_nms:
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
box_pred_per_image = box_pred_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
return box_pred_per_image, scores_per_image, labels_per_image
else:
return self.inference(outputs_class[-1], outputs_coord[-1])
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, t, x_start.shape)
sqrt_one_minus_alphas_cumprod_t = extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise
def forward(self, pixel_values, labels):
"""
Args:
"""
images = pixel_values.to(self.device)
images_whwh = list()
for image in images:
h, w = image.shape[-2:]
images_whwh.append(torch.tensor([w, h, w, h], device=self.device))
images_whwh = torch.stack(images_whwh)
features = self.backbone(images)
features = OrderedDict(
[(key, feature) for key, feature in zip(self.backbone.out_features, features.feature_maps)]
)
features = self.fpn(features) # [144, 72, 36, 18]
features = [features[f] for f in features.keys()]
# if self.training:
labels = list(map(lambda tensor: tensor.to(self.device), labels))
targets, x_boxes, noises, ts = self.prepare_targets(labels)
ts = ts.squeeze(-1)
x_boxes = x_boxes * images_whwh[:, None, :]
outputs_class, outputs_coord = self.head(features, x_boxes, ts)
output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
if self.deep_supervision:
output['aux_outputs'] = [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
loss_dict = self.criterion(output, targets)
weight_dict = self.criterion.weight_dict
for k in loss_dict.keys():
if k in weight_dict:
loss_dict[k] *= weight_dict[k]
loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
wandb_logs_values = ["loss_ce", "loss_bbox", "loss_giou"]
if self.training:
wandb.log({f'train/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
else:
wandb.log({f'eval/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
if not self.training:
pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
return DiffusionDetOutput(
loss=loss_dict['loss'],
loss_dict=loss_dict,
logits=pred_logits,
labels=pred_labels,
pred_boxes=pred_boxes,
)
return DiffusionDetOutput(
loss=loss_dict['loss'],
loss_dict=loss_dict,
logits=output['pred_logits'],
pred_boxes=output['pred_boxes']
)
def prepare_diffusion_concat(self, gt_boxes):
"""
:param gt_boxes: (cx, cy, w, h), normalized
:param num_proposals:
"""
t = torch.randint(0, self.num_timesteps, (1,), device=self.device).long()
noise = torch.randn(self.num_proposals, 4, device=self.device)
num_gt = gt_boxes.shape[0]
if not num_gt: # generate fake gt boxes if empty gt boxes
gt_boxes = torch.as_tensor([[0.5, 0.5, 1., 1.]], dtype=torch.float, device=self.device)
num_gt = 1
if num_gt < self.num_proposals:
box_placeholder = torch.randn(self.num_proposals - num_gt, 4,
device=self.device) / 6. + 0.5 # 3sigma = 1/2 --> sigma: 1/6
box_placeholder[:, 2:] = torch.clip(box_placeholder[:, 2:], min=1e-4)
x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
elif num_gt > self.num_proposals:
select_mask = [True] * self.num_proposals + [False] * (num_gt - self.num_proposals)
random.shuffle(select_mask)
x_start = gt_boxes[select_mask]
else:
x_start = gt_boxes
x_start = (x_start * 2. - 1.) * self.scale
# noise sample
x = self.q_sample(x_start=x_start, t=t, noise=noise)
x = torch.clamp(x, min=-1 * self.scale, max=self.scale)
x = ((x / self.scale) + 1) / 2.
diff_boxes = ops.box_convert(x, 'cxcywh', 'xyxy')
return diff_boxes, noise, t
def prepare_targets(self, targets):
new_targets = []
diffused_boxes = []
noises = []
ts = []
for target in targets:
h, w = target.size
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
gt_classes = target.class_labels.to(self.device)
gt_boxes = target.boxes.to(self.device)
d_boxes, d_noise, d_t = self.prepare_diffusion_concat(gt_boxes)
image_size_xyxy_tgt = image_size_xyxy.unsqueeze(0).repeat(len(gt_boxes), 1)
gt_boxes = gt_boxes * image_size_xyxy
gt_boxes = ops.box_convert(gt_boxes, 'cxcywh', 'xyxy')
diffused_boxes.append(d_boxes)
noises.append(d_noise)
ts.append(d_t)
new_targets.append({
"labels": gt_classes,
"boxes": target.boxes.to(self.device),
"boxes_xyxy": gt_boxes,
"image_size_xyxy": image_size_xyxy.to(self.device),
"image_size_xyxy_tgt": image_size_xyxy_tgt.to(self.device),
"area": ops.box_area(target.boxes.to(self.device)),
})
return new_targets, torch.stack(diffused_boxes), torch.stack(noises), torch.stack(ts)
def inference(self, box_cls, box_pred):
"""
Arguments:
box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
The tensor predicts the classification probability for each proposal.
box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every proposal
image_sizes (List[torch.Size]): the input image sizes
Returns:
results (List[Instances]): a list of #images elements.
"""
results = []
boxes_output = []
logits_output = []
labels_output = []
if self.use_focal or self.use_fed_loss:
scores = torch.sigmoid(box_cls)
labels = torch.arange(self.num_classes, device=self.device). \
unsqueeze(0).repeat(self.num_proposals, 1).flatten(0, 1)
for i, (scores_per_image, box_pred_per_image) in enumerate(zip(
scores, box_pred
)):
scores_per_image, topk_indices = scores_per_image.flatten(0, 1).topk(self.num_proposals, sorted=False)
labels_per_image = labels[topk_indices]
box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(1, self.num_classes, 1).view(-1, 4)
box_pred_per_image = box_pred_per_image[topk_indices]
if self.sampling_timesteps > 1:
return box_pred_per_image, scores_per_image, labels_per_image
if self.use_nms:
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
box_pred_per_image = box_pred_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
boxes_output.append(box_pred_per_image)
logits_output.append(scores_per_image)
labels_output.append(labels_per_image)
else:
# For each box we assign the best class or the second best if the best on is `no_object`.
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)
for i, (scores_per_image, labels_per_image, box_pred_per_image) in enumerate(zip(
scores, labels, box_pred
)):
if self.sampling_timesteps > 1:
return box_pred_per_image, scores_per_image, labels_per_image
if self.use_nms:
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
box_pred_per_image = box_pred_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
boxes_output.append(box_pred_per_image)
logits_output.append(scores_per_image)
labels_output.append(labels_per_image)
return boxes_output, logits_output, labels_output