Upload 5 files
Browse files- configuration_diffusiondet.py +2 -2
- head.py +386 -0
- image_processing_diffusiondet.py +1632 -0
- loss.py +415 -0
- modeling_diffusiondet.py +424 -0
configuration_diffusiondet.py
CHANGED
@@ -91,8 +91,8 @@ class DiffusionDetConfig(PretrainedConfig):
|
|
91 |
|
92 |
# Auto mapping
|
93 |
self.auto_map = {
|
94 |
-
"AutoConfig": "
|
95 |
-
"AutoModelForObjectDetection": "
|
96 |
}
|
97 |
|
98 |
# Backbone.
|
|
|
91 |
|
92 |
# Auto mapping
|
93 |
self.auto_map = {
|
94 |
+
"AutoConfig": "configuration_diffusiondet.DiffusionDetConfig",
|
95 |
+
"AutoModelForObjectDetection": "modeling_diffusiondet.DiffusionDet"
|
96 |
}
|
97 |
|
98 |
# Backbone.
|
head.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
from dataclasses import astuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn.modules.transformer import _get_activation_fn
|
8 |
+
from torchvision.ops import RoIAlign
|
9 |
+
|
10 |
+
_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
|
11 |
+
|
12 |
+
def convert_boxes_to_pooler_format(bboxes):
|
13 |
+
bs, num_proposals = bboxes.shape[:2]
|
14 |
+
sizes = torch.full((bs,), num_proposals).to(bboxes.device)
|
15 |
+
aggregated_bboxes = bboxes.view(bs * num_proposals, -1)
|
16 |
+
indices = torch.repeat_interleave(
|
17 |
+
torch.arange(len(sizes), dtype=aggregated_bboxes.dtype, device=aggregated_bboxes.device), sizes
|
18 |
+
)
|
19 |
+
return torch.cat([indices[:, None], aggregated_bboxes], dim=1)
|
20 |
+
|
21 |
+
|
22 |
+
def assign_boxes_to_levels(
|
23 |
+
bboxes,
|
24 |
+
min_level,
|
25 |
+
max_level,
|
26 |
+
canonical_box_size,
|
27 |
+
canonical_level,
|
28 |
+
):
|
29 |
+
aggregated_bboxes = bboxes.view(bboxes.shape[0] * bboxes.shape[1], -1)
|
30 |
+
area = (aggregated_bboxes[:, 2] - aggregated_bboxes[:, 0]) * (aggregated_bboxes[:, 3] - aggregated_bboxes[:, 1])
|
31 |
+
box_sizes = torch.sqrt(area)
|
32 |
+
# Eqn.(1) in FPN paper
|
33 |
+
level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8))
|
34 |
+
# clamp level to (min, max), in case the box size is too large or too small
|
35 |
+
# for the available feature maps
|
36 |
+
level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level)
|
37 |
+
return level_assignments.to(torch.int64) - min_level
|
38 |
+
|
39 |
+
|
40 |
+
class SinusoidalPositionEmbeddings(nn.Module):
|
41 |
+
def __init__(self, dim):
|
42 |
+
super().__init__()
|
43 |
+
self.dim = dim
|
44 |
+
|
45 |
+
def forward(self, time):
|
46 |
+
device = time.device
|
47 |
+
half_dim = self.dim // 2
|
48 |
+
embeddings = math.log(10000) / (half_dim - 1)
|
49 |
+
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
|
50 |
+
embeddings = time[:, None] * embeddings[None, :]
|
51 |
+
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
|
52 |
+
return embeddings
|
53 |
+
|
54 |
+
|
55 |
+
class HeadDynamicK(nn.Module):
|
56 |
+
def __init__(self, config, roi_input_shape):
|
57 |
+
super().__init__()
|
58 |
+
num_classes = config.num_labels
|
59 |
+
|
60 |
+
ddet_head = DiffusionDetHead(config, roi_input_shape, num_classes)
|
61 |
+
self.num_head = config.num_heads
|
62 |
+
self.head_series = nn.ModuleList([copy.deepcopy(ddet_head) for _ in range(self.num_head)])
|
63 |
+
self.return_intermediate = config.deep_supervision
|
64 |
+
|
65 |
+
# Gaussian random feature embedding layer for time
|
66 |
+
self.hidden_dim = config.hidden_dim
|
67 |
+
time_dim = self.hidden_dim * 4
|
68 |
+
self.time_mlp = nn.Sequential(
|
69 |
+
SinusoidalPositionEmbeddings(self.hidden_dim),
|
70 |
+
nn.Linear(self.hidden_dim, time_dim),
|
71 |
+
nn.GELU(),
|
72 |
+
nn.Linear(time_dim, time_dim),
|
73 |
+
)
|
74 |
+
|
75 |
+
# Init parameters.
|
76 |
+
self.use_focal = config.use_focal
|
77 |
+
self.use_fed_loss = config.use_fed_loss
|
78 |
+
self.num_classes = num_classes
|
79 |
+
if self.use_focal or self.use_fed_loss:
|
80 |
+
prior_prob = config.prior_prob
|
81 |
+
self.bias_value = -math.log((1 - prior_prob) / prior_prob)
|
82 |
+
self._reset_parameters()
|
83 |
+
|
84 |
+
def _reset_parameters(self):
|
85 |
+
# init all parameters.
|
86 |
+
for p in self.parameters():
|
87 |
+
if p.dim() > 1:
|
88 |
+
nn.init.xavier_uniform_(p)
|
89 |
+
|
90 |
+
# initialize the bias for focal loss and fed loss.
|
91 |
+
if self.use_focal or self.use_fed_loss:
|
92 |
+
if p.shape[-1] == self.num_classes or p.shape[-1] == self.num_classes + 1:
|
93 |
+
nn.init.constant_(p, self.bias_value)
|
94 |
+
|
95 |
+
|
96 |
+
def forward(self, features, bboxes, t):
|
97 |
+
# assert t shape (batch_size)
|
98 |
+
time = self.time_mlp(t)
|
99 |
+
|
100 |
+
inter_class_logits = []
|
101 |
+
inter_pred_bboxes = []
|
102 |
+
|
103 |
+
bs = len(features[0])
|
104 |
+
|
105 |
+
class_logits, pred_bboxes = None, None
|
106 |
+
for head_idx, ddet_head in enumerate(self.head_series):
|
107 |
+
class_logits, pred_bboxes, proposal_features = ddet_head(features, bboxes, time)
|
108 |
+
if self.return_intermediate:
|
109 |
+
inter_class_logits.append(class_logits)
|
110 |
+
inter_pred_bboxes.append(pred_bboxes)
|
111 |
+
bboxes = pred_bboxes.detach()
|
112 |
+
|
113 |
+
if self.return_intermediate:
|
114 |
+
return torch.stack(inter_class_logits), torch.stack(inter_pred_bboxes)
|
115 |
+
|
116 |
+
return class_logits[None], pred_bboxes[None]
|
117 |
+
|
118 |
+
|
119 |
+
class DynamicConv(nn.Module):
|
120 |
+
def __init__(self, config):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.hidden_dim = config.hidden_dim
|
124 |
+
self.dim_dynamic = config.dim_dynamic
|
125 |
+
self.num_dynamic = config.num_dynamic
|
126 |
+
self.num_params = self.hidden_dim * self.dim_dynamic
|
127 |
+
self.dynamic_layer = nn.Linear(self.hidden_dim, self.num_dynamic * self.num_params)
|
128 |
+
|
129 |
+
self.norm1 = nn.LayerNorm(self.dim_dynamic)
|
130 |
+
self.norm2 = nn.LayerNorm(self.hidden_dim)
|
131 |
+
|
132 |
+
self.activation = nn.ReLU(inplace=True)
|
133 |
+
|
134 |
+
pooler_resolution = config.pooler_resolution
|
135 |
+
num_output = self.hidden_dim * pooler_resolution ** 2
|
136 |
+
self.out_layer = nn.Linear(num_output, self.hidden_dim)
|
137 |
+
self.norm3 = nn.LayerNorm(self.hidden_dim)
|
138 |
+
|
139 |
+
|
140 |
+
def forward(self, pro_features, roi_features):
|
141 |
+
features = roi_features.permute(1, 0, 2)
|
142 |
+
parameters = self.dynamic_layer(pro_features).permute(1, 0, 2)
|
143 |
+
|
144 |
+
param1 = parameters[:, :, :self.num_params].view(-1, self.hidden_dim, self.dim_dynamic)
|
145 |
+
param2 = parameters[:, :, self.num_params:].view(-1, self.dim_dynamic, self.hidden_dim)
|
146 |
+
|
147 |
+
features = torch.bmm(features, param1)
|
148 |
+
features = self.norm1(features)
|
149 |
+
features = self.activation(features)
|
150 |
+
|
151 |
+
features = torch.bmm(features, param2)
|
152 |
+
features = self.norm2(features)
|
153 |
+
features = self.activation(features)
|
154 |
+
|
155 |
+
features = features.flatten(1)
|
156 |
+
features = self.out_layer(features)
|
157 |
+
features = self.norm3(features)
|
158 |
+
features = self.activation(features)
|
159 |
+
|
160 |
+
return features
|
161 |
+
|
162 |
+
|
163 |
+
class DiffusionDetHead(nn.Module):
|
164 |
+
def __init__(self, config, roi_input_shape, num_classes):
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
dim_feedforward = config.dim_feedforward
|
168 |
+
nhead = config.num_attn_heads
|
169 |
+
dropout = config.dropout
|
170 |
+
activation = config.activation
|
171 |
+
in_features = config.roi_head_in_features
|
172 |
+
pooler_resolution = config.pooler_resolution
|
173 |
+
pooler_scales = tuple(1.0 / roi_input_shape[k]['stride'] for k in in_features)
|
174 |
+
sampling_ratio = config.sampling_ratio
|
175 |
+
|
176 |
+
self.hidden_dim = config.hidden_dim
|
177 |
+
|
178 |
+
self.pooler = ROIPooler(
|
179 |
+
output_size=pooler_resolution,
|
180 |
+
scales=pooler_scales,
|
181 |
+
sampling_ratio=sampling_ratio,
|
182 |
+
)
|
183 |
+
|
184 |
+
# dynamic.
|
185 |
+
self.self_attn = nn.MultiheadAttention(self.hidden_dim, nhead, dropout=dropout)
|
186 |
+
self.inst_interact = DynamicConv(config)
|
187 |
+
|
188 |
+
self.linear1 = nn.Linear(self.hidden_dim, dim_feedforward)
|
189 |
+
self.dropout = nn.Dropout(dropout)
|
190 |
+
self.linear2 = nn.Linear(dim_feedforward, self.hidden_dim)
|
191 |
+
|
192 |
+
self.norm1 = nn.LayerNorm(self.hidden_dim)
|
193 |
+
self.norm2 = nn.LayerNorm(self.hidden_dim)
|
194 |
+
self.norm3 = nn.LayerNorm(self.hidden_dim)
|
195 |
+
self.dropout1 = nn.Dropout(dropout)
|
196 |
+
self.dropout2 = nn.Dropout(dropout)
|
197 |
+
self.dropout3 = nn.Dropout(dropout)
|
198 |
+
|
199 |
+
self.activation = _get_activation_fn(activation)
|
200 |
+
|
201 |
+
# block time mlp
|
202 |
+
self.block_time_mlp = nn.Sequential(nn.SiLU(), nn.Linear(self.hidden_dim * 4, self.hidden_dim * 2))
|
203 |
+
|
204 |
+
# cls.
|
205 |
+
num_cls = config.num_cls
|
206 |
+
cls_module = list()
|
207 |
+
for _ in range(num_cls):
|
208 |
+
cls_module.append(nn.Linear(self.hidden_dim, self.hidden_dim, False))
|
209 |
+
cls_module.append(nn.LayerNorm(self.hidden_dim))
|
210 |
+
cls_module.append(nn.ReLU(inplace=True))
|
211 |
+
self.cls_module = nn.ModuleList(cls_module)
|
212 |
+
|
213 |
+
# reg.
|
214 |
+
num_reg = config.num_reg
|
215 |
+
reg_module = list()
|
216 |
+
for _ in range(num_reg):
|
217 |
+
reg_module.append(nn.Linear(self.hidden_dim, self.hidden_dim, False))
|
218 |
+
reg_module.append(nn.LayerNorm(self.hidden_dim))
|
219 |
+
reg_module.append(nn.ReLU(inplace=True))
|
220 |
+
self.reg_module = nn.ModuleList(reg_module)
|
221 |
+
|
222 |
+
# pred.
|
223 |
+
self.use_focal = config.use_focal
|
224 |
+
self.use_fed_loss = config.use_fed_loss
|
225 |
+
if self.use_focal or self.use_fed_loss:
|
226 |
+
self.class_logits = nn.Linear(self.hidden_dim, num_classes)
|
227 |
+
else:
|
228 |
+
self.class_logits = nn.Linear(self.hidden_dim, num_classes + 1)
|
229 |
+
self.bboxes_delta = nn.Linear(self.hidden_dim, 4)
|
230 |
+
self.scale_clamp = _DEFAULT_SCALE_CLAMP
|
231 |
+
self.bbox_weights = (2.0, 2.0, 1.0, 1.0)
|
232 |
+
|
233 |
+
def forward(self, features, bboxes, time_emb):
|
234 |
+
bs, num_proposals = bboxes.shape[:2]
|
235 |
+
|
236 |
+
# roi_feature.
|
237 |
+
roi_features = self.pooler(features, bboxes)
|
238 |
+
|
239 |
+
pro_features = roi_features.view(bs, num_proposals, self.hidden_dim, -1).mean(-1)
|
240 |
+
|
241 |
+
roi_features = roi_features.view(bs * num_proposals, self.hidden_dim, -1).permute(2, 0, 1)
|
242 |
+
|
243 |
+
# self_att.
|
244 |
+
pro_features = pro_features.view(bs, num_proposals, self.hidden_dim).permute(1, 0, 2)
|
245 |
+
pro_features2 = self.self_attn(pro_features, pro_features, value=pro_features)[0]
|
246 |
+
pro_features = pro_features + self.dropout1(pro_features2)
|
247 |
+
pro_features = self.norm1(pro_features)
|
248 |
+
|
249 |
+
# inst_interact.
|
250 |
+
pro_features = pro_features.view(num_proposals, bs, self.hidden_dim).permute(1, 0, 2).reshape(1, bs * num_proposals,
|
251 |
+
self.hidden_dim)
|
252 |
+
pro_features2 = self.inst_interact(pro_features, roi_features)
|
253 |
+
pro_features = pro_features + self.dropout2(pro_features2)
|
254 |
+
obj_features = self.norm2(pro_features)
|
255 |
+
|
256 |
+
# obj_feature.
|
257 |
+
obj_features2 = self.linear2(self.dropout(self.activation(self.linear1(obj_features))))
|
258 |
+
obj_features = obj_features + self.dropout3(obj_features2)
|
259 |
+
obj_features = self.norm3(obj_features)
|
260 |
+
|
261 |
+
fc_feature = obj_features.transpose(0, 1).reshape(bs * num_proposals, -1)
|
262 |
+
|
263 |
+
scale_shift = self.block_time_mlp(time_emb)
|
264 |
+
scale_shift = torch.repeat_interleave(scale_shift, num_proposals, dim=0)
|
265 |
+
scale, shift = scale_shift.chunk(2, dim=1)
|
266 |
+
fc_feature = fc_feature * (scale + 1) + shift
|
267 |
+
|
268 |
+
cls_feature = fc_feature.clone()
|
269 |
+
reg_feature = fc_feature.clone()
|
270 |
+
for cls_layer in self.cls_module:
|
271 |
+
cls_feature = cls_layer(cls_feature)
|
272 |
+
for reg_layer in self.reg_module:
|
273 |
+
reg_feature = reg_layer(reg_feature)
|
274 |
+
class_logits = self.class_logits(cls_feature)
|
275 |
+
bboxes_deltas = self.bboxes_delta(reg_feature)
|
276 |
+
pred_bboxes = self.apply_deltas(bboxes_deltas, bboxes.view(-1, 4))
|
277 |
+
|
278 |
+
return class_logits.view(bs, num_proposals, -1), pred_bboxes.view(bs, num_proposals, -1), obj_features
|
279 |
+
|
280 |
+
def apply_deltas(self, deltas, boxes):
|
281 |
+
"""
|
282 |
+
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
|
286 |
+
deltas[i] represents k potentially different class-specific
|
287 |
+
box transformations for the single box boxes[i].
|
288 |
+
boxes (Tensor): boxes to transform, of shape (N, 4)
|
289 |
+
"""
|
290 |
+
boxes = boxes.to(deltas.dtype)
|
291 |
+
|
292 |
+
widths = boxes[:, 2] - boxes[:, 0]
|
293 |
+
heights = boxes[:, 3] - boxes[:, 1]
|
294 |
+
ctr_x = boxes[:, 0] + 0.5 * widths
|
295 |
+
ctr_y = boxes[:, 1] + 0.5 * heights
|
296 |
+
|
297 |
+
wx, wy, ww, wh = self.bbox_weights
|
298 |
+
dx = deltas[:, 0::4] / wx
|
299 |
+
dy = deltas[:, 1::4] / wy
|
300 |
+
dw = deltas[:, 2::4] / ww
|
301 |
+
dh = deltas[:, 3::4] / wh
|
302 |
+
|
303 |
+
# Prevent sending too large values into torch.exp()
|
304 |
+
dw = torch.clamp(dw, max=self.scale_clamp)
|
305 |
+
dh = torch.clamp(dh, max=self.scale_clamp)
|
306 |
+
|
307 |
+
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
|
308 |
+
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
|
309 |
+
pred_w = torch.exp(dw) * widths[:, None]
|
310 |
+
pred_h = torch.exp(dh) * heights[:, None]
|
311 |
+
|
312 |
+
pred_boxes = torch.zeros_like(deltas)
|
313 |
+
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
|
314 |
+
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
|
315 |
+
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
|
316 |
+
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
|
317 |
+
|
318 |
+
return pred_boxes
|
319 |
+
|
320 |
+
|
321 |
+
class ROIPooler(nn.Module):
|
322 |
+
"""
|
323 |
+
Region of interest feature map pooler that supports pooling from one or more
|
324 |
+
feature maps.
|
325 |
+
"""
|
326 |
+
|
327 |
+
def __init__(
|
328 |
+
self,
|
329 |
+
output_size,
|
330 |
+
scales,
|
331 |
+
sampling_ratio,
|
332 |
+
canonical_box_size=224,
|
333 |
+
canonical_level=4,
|
334 |
+
):
|
335 |
+
super().__init__()
|
336 |
+
|
337 |
+
min_level = -(math.log2(scales[0]))
|
338 |
+
max_level = -(math.log2(scales[-1]))
|
339 |
+
|
340 |
+
if isinstance(output_size, int):
|
341 |
+
output_size = (output_size, output_size)
|
342 |
+
assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int)
|
343 |
+
assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level))
|
344 |
+
assert (len(scales) == max_level - min_level + 1)
|
345 |
+
assert 0 <= min_level <= max_level
|
346 |
+
assert canonical_box_size > 0
|
347 |
+
|
348 |
+
self.output_size = output_size
|
349 |
+
self.min_level = int(min_level)
|
350 |
+
self.max_level = int(max_level)
|
351 |
+
self.canonical_level = canonical_level
|
352 |
+
self.canonical_box_size = canonical_box_size
|
353 |
+
self.level_poolers = nn.ModuleList(
|
354 |
+
RoIAlign(
|
355 |
+
output_size, spatial_scale=scale, sampling_ratio=sampling_ratio, aligned=True
|
356 |
+
)
|
357 |
+
for scale in scales
|
358 |
+
)
|
359 |
+
|
360 |
+
def forward(self, x, bboxes):
|
361 |
+
num_level_assignments = len(self.level_poolers)
|
362 |
+
assert len(x) == num_level_assignments and len(bboxes) == x[0].size(0)
|
363 |
+
|
364 |
+
pooler_fmt_boxes = convert_boxes_to_pooler_format(bboxes)
|
365 |
+
|
366 |
+
if num_level_assignments == 1:
|
367 |
+
return self.level_poolers[0](x[0], pooler_fmt_boxes)
|
368 |
+
|
369 |
+
level_assignments = assign_boxes_to_levels(
|
370 |
+
bboxes, self.min_level, self.max_level, self.canonical_box_size, self.canonical_level
|
371 |
+
)
|
372 |
+
|
373 |
+
batches = pooler_fmt_boxes.shape[0]
|
374 |
+
channels = x[0].shape[1]
|
375 |
+
output_size = self.output_size[0]
|
376 |
+
sizes = (batches, channels, output_size, output_size)
|
377 |
+
|
378 |
+
output = torch.zeros(sizes, dtype=x[0].dtype, device=x[0].device)
|
379 |
+
|
380 |
+
for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)):
|
381 |
+
inds = (level_assignments == level).nonzero(as_tuple=True)[0]
|
382 |
+
pooler_fmt_boxes_level = pooler_fmt_boxes[inds]
|
383 |
+
# Use index_put_ instead of advance indexing, to avoid pytorch/issues/49852
|
384 |
+
output.index_put_((inds,), pooler(x_level, pooler_fmt_boxes_level))
|
385 |
+
|
386 |
+
return output
|
image_processing_diffusiondet.py
ADDED
@@ -0,0 +1,1632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Deformable DETR."""
|
16 |
+
|
17 |
+
import io
|
18 |
+
import pathlib
|
19 |
+
from collections import defaultdict
|
20 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
from transformers.feature_extraction_utils import BatchFeature
|
24 |
+
from transformers.image_processing_utils import BaseImageProcessor, get_size_dict
|
25 |
+
from transformers.image_transforms import (
|
26 |
+
PaddingMode,
|
27 |
+
center_to_corners_format,
|
28 |
+
corners_to_center_format,
|
29 |
+
id_to_rgb,
|
30 |
+
pad,
|
31 |
+
rescale,
|
32 |
+
resize,
|
33 |
+
rgb_to_id,
|
34 |
+
to_channel_dimension_format,
|
35 |
+
)
|
36 |
+
|
37 |
+
from transformers.image_utils import (
|
38 |
+
IMAGENET_DEFAULT_MEAN,
|
39 |
+
IMAGENET_DEFAULT_STD,
|
40 |
+
AnnotationFormat,
|
41 |
+
AnnotationType,
|
42 |
+
ChannelDimension,
|
43 |
+
ImageInput,
|
44 |
+
PILImageResampling,
|
45 |
+
get_image_size,
|
46 |
+
infer_channel_dimension_format,
|
47 |
+
is_scaled_image,
|
48 |
+
make_list_of_images,
|
49 |
+
to_numpy_array,
|
50 |
+
valid_images,
|
51 |
+
validate_annotations,
|
52 |
+
validate_kwargs,
|
53 |
+
validate_preprocess_arguments
|
54 |
+
)
|
55 |
+
|
56 |
+
from transformers.utils import (
|
57 |
+
TensorType,
|
58 |
+
is_flax_available,
|
59 |
+
is_jax_tensor,
|
60 |
+
is_tf_available,
|
61 |
+
is_tf_tensor,
|
62 |
+
is_torch_tensor,
|
63 |
+
is_vision_available
|
64 |
+
)
|
65 |
+
from transformers.utils import (
|
66 |
+
is_torch_available,
|
67 |
+
is_scipy_available,
|
68 |
+
logging
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
if is_torch_available():
|
73 |
+
import torch
|
74 |
+
from torch import nn
|
75 |
+
|
76 |
+
if is_vision_available():
|
77 |
+
import PIL
|
78 |
+
|
79 |
+
if is_scipy_available():
|
80 |
+
import scipy.special
|
81 |
+
import scipy.stats
|
82 |
+
|
83 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
84 |
+
|
85 |
+
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
|
86 |
+
|
87 |
+
|
88 |
+
# Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio
|
89 |
+
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
|
90 |
+
"""
|
91 |
+
Computes the output image size given the input image size and the desired output size.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
image_size (`Tuple[int, int]`):
|
95 |
+
The input image size.
|
96 |
+
size (`int`):
|
97 |
+
The desired output size.
|
98 |
+
max_size (`int`, *optional*):
|
99 |
+
The maximum allowed output size.
|
100 |
+
"""
|
101 |
+
height, width = image_size
|
102 |
+
raw_size = None
|
103 |
+
if max_size is not None:
|
104 |
+
min_original_size = float(min((height, width)))
|
105 |
+
max_original_size = float(max((height, width)))
|
106 |
+
if max_original_size / min_original_size * size > max_size:
|
107 |
+
raw_size = max_size * min_original_size / max_original_size
|
108 |
+
size = int(round(raw_size))
|
109 |
+
|
110 |
+
if (height <= width and height == size) or (width <= height and width == size):
|
111 |
+
oh, ow = height, width
|
112 |
+
elif width < height:
|
113 |
+
ow = size
|
114 |
+
if max_size is not None and raw_size is not None:
|
115 |
+
oh = int(raw_size * height / width)
|
116 |
+
else:
|
117 |
+
oh = int(size * height / width)
|
118 |
+
else:
|
119 |
+
oh = size
|
120 |
+
if max_size is not None and raw_size is not None:
|
121 |
+
ow = int(raw_size * width / height)
|
122 |
+
else:
|
123 |
+
ow = int(size * width / height)
|
124 |
+
|
125 |
+
return (oh, ow)
|
126 |
+
|
127 |
+
|
128 |
+
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
|
129 |
+
def get_resize_output_image_size(
|
130 |
+
input_image: np.ndarray,
|
131 |
+
size: Union[int, Tuple[int, int], List[int]],
|
132 |
+
max_size: Optional[int] = None,
|
133 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
134 |
+
) -> Tuple[int, int]:
|
135 |
+
"""
|
136 |
+
Computes the output image size given the input image size and the desired output size. If the desired output size
|
137 |
+
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
|
138 |
+
image size is computed by keeping the aspect ratio of the input image size.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
input_image (`np.ndarray`):
|
142 |
+
The image to resize.
|
143 |
+
size (`int` or `Tuple[int, int]` or `List[int]`):
|
144 |
+
The desired output size.
|
145 |
+
max_size (`int`, *optional*):
|
146 |
+
The maximum allowed output size.
|
147 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
148 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
149 |
+
"""
|
150 |
+
image_size = get_image_size(input_image, input_data_format)
|
151 |
+
if isinstance(size, (list, tuple)):
|
152 |
+
return size
|
153 |
+
|
154 |
+
return get_size_with_aspect_ratio(image_size, size, max_size)
|
155 |
+
|
156 |
+
|
157 |
+
# Copied from transformers.models.detr.image_processing_detr.get_image_size_for_max_height_width
|
158 |
+
def get_image_size_for_max_height_width(
|
159 |
+
input_image: np.ndarray,
|
160 |
+
max_height: int,
|
161 |
+
max_width: int,
|
162 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
163 |
+
) -> Tuple[int, int]:
|
164 |
+
"""
|
165 |
+
Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio.
|
166 |
+
Important, even if image_height < max_height and image_width < max_width, the image will be resized
|
167 |
+
to at least one of the edges be equal to max_height or max_width.
|
168 |
+
|
169 |
+
For example:
|
170 |
+
- input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50)
|
171 |
+
- input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400)
|
172 |
+
|
173 |
+
Args:
|
174 |
+
input_image (`np.ndarray`):
|
175 |
+
The image to resize.
|
176 |
+
max_height (`int`):
|
177 |
+
The maximum allowed height.
|
178 |
+
max_width (`int`):
|
179 |
+
The maximum allowed width.
|
180 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
181 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
182 |
+
"""
|
183 |
+
image_size = get_image_size(input_image, input_data_format)
|
184 |
+
height, width = image_size
|
185 |
+
height_scale = max_height / height
|
186 |
+
width_scale = max_width / width
|
187 |
+
min_scale = min(height_scale, width_scale)
|
188 |
+
new_height = int(height * min_scale)
|
189 |
+
new_width = int(width * min_scale)
|
190 |
+
return new_height, new_width
|
191 |
+
|
192 |
+
|
193 |
+
# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn
|
194 |
+
def get_numpy_to_framework_fn(arr) -> Callable:
|
195 |
+
"""
|
196 |
+
Returns a function that converts a numpy array to the framework of the input array.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
arr (`np.ndarray`): The array to convert.
|
200 |
+
"""
|
201 |
+
if isinstance(arr, np.ndarray):
|
202 |
+
return np.array
|
203 |
+
if is_tf_available() and is_tf_tensor(arr):
|
204 |
+
import tensorflow as tf
|
205 |
+
|
206 |
+
return tf.convert_to_tensor
|
207 |
+
if is_torch_available() and is_torch_tensor(arr):
|
208 |
+
import torch
|
209 |
+
|
210 |
+
return torch.tensor
|
211 |
+
if is_flax_available() and is_jax_tensor(arr):
|
212 |
+
import jax.numpy as jnp
|
213 |
+
|
214 |
+
return jnp.array
|
215 |
+
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
|
216 |
+
|
217 |
+
|
218 |
+
# Copied from transformers.models.detr.image_processing_detr.safe_squeeze
|
219 |
+
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
|
220 |
+
"""
|
221 |
+
Squeezes an array, but only if the axis specified has dim 1.
|
222 |
+
"""
|
223 |
+
if axis is None:
|
224 |
+
return arr.squeeze()
|
225 |
+
|
226 |
+
try:
|
227 |
+
return arr.squeeze(axis=axis)
|
228 |
+
except ValueError:
|
229 |
+
return arr
|
230 |
+
|
231 |
+
|
232 |
+
# Copied from transformers.models.detr.image_processing_detr.normalize_annotation
|
233 |
+
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
234 |
+
image_height, image_width = image_size
|
235 |
+
norm_annotation = {}
|
236 |
+
for key, value in annotation.items():
|
237 |
+
if key == "boxes":
|
238 |
+
boxes = value
|
239 |
+
boxes = corners_to_center_format(boxes)
|
240 |
+
boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
|
241 |
+
norm_annotation[key] = boxes
|
242 |
+
else:
|
243 |
+
norm_annotation[key] = value
|
244 |
+
return norm_annotation
|
245 |
+
|
246 |
+
|
247 |
+
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
|
248 |
+
def max_across_indices(values: Iterable[Any]) -> List[Any]:
|
249 |
+
"""
|
250 |
+
Return the maximum value across all indices of an iterable of values.
|
251 |
+
"""
|
252 |
+
return [max(values_i) for values_i in zip(*values)]
|
253 |
+
|
254 |
+
|
255 |
+
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
|
256 |
+
def get_max_height_width(
|
257 |
+
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
258 |
+
) -> List[int]:
|
259 |
+
"""
|
260 |
+
Get the maximum height and width across all images in a batch.
|
261 |
+
"""
|
262 |
+
if input_data_format is None:
|
263 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
264 |
+
|
265 |
+
if input_data_format == ChannelDimension.FIRST:
|
266 |
+
_, max_height, max_width = max_across_indices([img.shape for img in images])
|
267 |
+
elif input_data_format == ChannelDimension.LAST:
|
268 |
+
max_height, max_width, _ = max_across_indices([img.shape for img in images])
|
269 |
+
else:
|
270 |
+
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
|
271 |
+
return (max_height, max_width)
|
272 |
+
|
273 |
+
|
274 |
+
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
|
275 |
+
def make_pixel_mask(
|
276 |
+
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
277 |
+
) -> np.ndarray:
|
278 |
+
"""
|
279 |
+
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
image (`np.ndarray`):
|
283 |
+
Image to make the pixel mask for.
|
284 |
+
output_size (`Tuple[int, int]`):
|
285 |
+
Output size of the mask.
|
286 |
+
"""
|
287 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
288 |
+
mask = np.zeros(output_size, dtype=np.int64)
|
289 |
+
mask[:input_height, :input_width] = 1
|
290 |
+
return mask
|
291 |
+
|
292 |
+
|
293 |
+
# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask
|
294 |
+
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
|
295 |
+
"""
|
296 |
+
Convert a COCO polygon annotation to a mask.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
segmentations (`List[List[float]]`):
|
300 |
+
List of polygons, each polygon represented by a list of x-y coordinates.
|
301 |
+
height (`int`):
|
302 |
+
Height of the mask.
|
303 |
+
width (`int`):
|
304 |
+
Width of the mask.
|
305 |
+
"""
|
306 |
+
try:
|
307 |
+
from pycocotools import mask as coco_mask
|
308 |
+
except ImportError:
|
309 |
+
raise ImportError("Pycocotools is not installed in your environment.")
|
310 |
+
|
311 |
+
masks = []
|
312 |
+
for polygons in segmentations:
|
313 |
+
rles = coco_mask.frPyObjects(polygons, height, width)
|
314 |
+
mask = coco_mask.decode(rles)
|
315 |
+
if len(mask.shape) < 3:
|
316 |
+
mask = mask[..., None]
|
317 |
+
mask = np.asarray(mask, dtype=np.uint8)
|
318 |
+
mask = np.any(mask, axis=2)
|
319 |
+
masks.append(mask)
|
320 |
+
if masks:
|
321 |
+
masks = np.stack(masks, axis=0)
|
322 |
+
else:
|
323 |
+
masks = np.zeros((0, height, width), dtype=np.uint8)
|
324 |
+
|
325 |
+
return masks
|
326 |
+
|
327 |
+
|
328 |
+
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DeformableDetr
|
329 |
+
def prepare_coco_detection_annotation(
|
330 |
+
image,
|
331 |
+
target,
|
332 |
+
return_segmentation_masks: bool = False,
|
333 |
+
input_data_format: Optional[Union[ChannelDimension, str]] = None,
|
334 |
+
):
|
335 |
+
"""
|
336 |
+
Convert the target in COCO format into the format expected by DeformableDetr.
|
337 |
+
"""
|
338 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
339 |
+
|
340 |
+
image_id = target["image_id"]
|
341 |
+
image_id = np.asarray([image_id], dtype=np.int64)
|
342 |
+
|
343 |
+
# Get all COCO annotations for the given image.
|
344 |
+
annotations = target["annotations"]
|
345 |
+
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
|
346 |
+
|
347 |
+
classes = [obj["category_id"] for obj in annotations]
|
348 |
+
classes = np.asarray(classes, dtype=np.int64)
|
349 |
+
|
350 |
+
# for conversion to coco api
|
351 |
+
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
|
352 |
+
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
|
353 |
+
|
354 |
+
boxes = [obj["bbox"] for obj in annotations]
|
355 |
+
# guard against no boxes via resizing
|
356 |
+
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
|
357 |
+
boxes[:, 2:] += boxes[:, :2]
|
358 |
+
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
|
359 |
+
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
|
360 |
+
|
361 |
+
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
362 |
+
|
363 |
+
new_target = {}
|
364 |
+
new_target["image_id"] = image_id
|
365 |
+
new_target["class_labels"] = classes[keep]
|
366 |
+
new_target["boxes"] = boxes[keep]
|
367 |
+
new_target["area"] = area[keep]
|
368 |
+
new_target["iscrowd"] = iscrowd[keep]
|
369 |
+
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
|
370 |
+
|
371 |
+
if annotations and "keypoints" in annotations[0]:
|
372 |
+
keypoints = [obj["keypoints"] for obj in annotations]
|
373 |
+
# Converting the filtered keypoints list to a numpy array
|
374 |
+
keypoints = np.asarray(keypoints, dtype=np.float32)
|
375 |
+
# Apply the keep mask here to filter the relevant annotations
|
376 |
+
keypoints = keypoints[keep]
|
377 |
+
num_keypoints = keypoints.shape[0]
|
378 |
+
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
|
379 |
+
new_target["keypoints"] = keypoints
|
380 |
+
|
381 |
+
if return_segmentation_masks:
|
382 |
+
segmentation_masks = [obj["segmentation"] for obj in annotations]
|
383 |
+
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
|
384 |
+
new_target["masks"] = masks[keep]
|
385 |
+
|
386 |
+
return new_target
|
387 |
+
|
388 |
+
|
389 |
+
# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
|
390 |
+
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
|
391 |
+
"""
|
392 |
+
Compute the bounding boxes around the provided panoptic segmentation masks.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
masks: masks in format `[number_masks, height, width]` where N is the number of masks
|
396 |
+
|
397 |
+
Returns:
|
398 |
+
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
|
399 |
+
"""
|
400 |
+
if masks.size == 0:
|
401 |
+
return np.zeros((0, 4))
|
402 |
+
|
403 |
+
h, w = masks.shape[-2:]
|
404 |
+
y = np.arange(0, h, dtype=np.float32)
|
405 |
+
x = np.arange(0, w, dtype=np.float32)
|
406 |
+
# see https://github.com/pytorch/pytorch/issues/50276
|
407 |
+
y, x = np.meshgrid(y, x, indexing="ij")
|
408 |
+
|
409 |
+
x_mask = masks * np.expand_dims(x, axis=0)
|
410 |
+
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
|
411 |
+
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
|
412 |
+
x_min = x.filled(fill_value=1e8)
|
413 |
+
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
|
414 |
+
|
415 |
+
y_mask = masks * np.expand_dims(y, axis=0)
|
416 |
+
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
|
417 |
+
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
|
418 |
+
y_min = y.filled(fill_value=1e8)
|
419 |
+
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
|
420 |
+
|
421 |
+
return np.stack([x_min, y_min, x_max, y_max], 1)
|
422 |
+
|
423 |
+
|
424 |
+
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DeformableDetr
|
425 |
+
def prepare_coco_panoptic_annotation(
|
426 |
+
image: np.ndarray,
|
427 |
+
target: Dict,
|
428 |
+
masks_path: Union[str, pathlib.Path],
|
429 |
+
return_masks: bool = True,
|
430 |
+
input_data_format: Union[ChannelDimension, str] = None,
|
431 |
+
) -> Dict:
|
432 |
+
"""
|
433 |
+
Prepare a coco panoptic annotation for DeformableDetr.
|
434 |
+
"""
|
435 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
436 |
+
annotation_path = pathlib.Path(masks_path) / target["file_name"]
|
437 |
+
|
438 |
+
new_target = {}
|
439 |
+
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
|
440 |
+
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
441 |
+
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
442 |
+
|
443 |
+
if "segments_info" in target:
|
444 |
+
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
|
445 |
+
masks = rgb_to_id(masks)
|
446 |
+
|
447 |
+
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
|
448 |
+
masks = masks == ids[:, None, None]
|
449 |
+
masks = masks.astype(np.uint8)
|
450 |
+
if return_masks:
|
451 |
+
new_target["masks"] = masks
|
452 |
+
new_target["boxes"] = masks_to_boxes(masks)
|
453 |
+
new_target["class_labels"] = np.array(
|
454 |
+
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
|
455 |
+
)
|
456 |
+
new_target["iscrowd"] = np.asarray(
|
457 |
+
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
|
458 |
+
)
|
459 |
+
new_target["area"] = np.asarray(
|
460 |
+
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
|
461 |
+
)
|
462 |
+
|
463 |
+
return new_target
|
464 |
+
|
465 |
+
|
466 |
+
# Copied from transformers.models.detr.image_processing_detr.get_segmentation_image
|
467 |
+
def get_segmentation_image(
|
468 |
+
masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
|
469 |
+
):
|
470 |
+
h, w = input_size
|
471 |
+
final_h, final_w = target_size
|
472 |
+
|
473 |
+
m_id = scipy.special.softmax(masks.transpose(0, 1), -1)
|
474 |
+
|
475 |
+
if m_id.shape[-1] == 0:
|
476 |
+
# We didn't detect any mask :(
|
477 |
+
m_id = np.zeros((h, w), dtype=np.int64)
|
478 |
+
else:
|
479 |
+
m_id = m_id.argmax(-1).reshape(h, w)
|
480 |
+
|
481 |
+
if deduplicate:
|
482 |
+
# Merge the masks corresponding to the same stuff class
|
483 |
+
for equiv in stuff_equiv_classes.values():
|
484 |
+
for eq_id in equiv:
|
485 |
+
m_id[m_id == eq_id] = equiv[0]
|
486 |
+
|
487 |
+
seg_img = id_to_rgb(m_id)
|
488 |
+
seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
|
489 |
+
return seg_img
|
490 |
+
|
491 |
+
|
492 |
+
# Copied from transformers.models.detr.image_processing_detr.get_mask_area
|
493 |
+
def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
|
494 |
+
final_h, final_w = target_size
|
495 |
+
np_seg_img = seg_img.astype(np.uint8)
|
496 |
+
np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
|
497 |
+
m_id = rgb_to_id(np_seg_img)
|
498 |
+
area = [(m_id == i).sum() for i in range(n_classes)]
|
499 |
+
return area
|
500 |
+
|
501 |
+
|
502 |
+
# Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities
|
503 |
+
def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
504 |
+
probs = scipy.special.softmax(logits, axis=-1)
|
505 |
+
labels = probs.argmax(-1, keepdims=True)
|
506 |
+
scores = np.take_along_axis(probs, labels, axis=-1)
|
507 |
+
scores, labels = scores.squeeze(-1), labels.squeeze(-1)
|
508 |
+
return scores, labels
|
509 |
+
|
510 |
+
|
511 |
+
# Copied from transformers.models.detr.image_processing_detr.post_process_panoptic_sample
|
512 |
+
def post_process_panoptic_sample(
|
513 |
+
out_logits: np.ndarray,
|
514 |
+
masks: np.ndarray,
|
515 |
+
boxes: np.ndarray,
|
516 |
+
processed_size: Tuple[int, int],
|
517 |
+
target_size: Tuple[int, int],
|
518 |
+
is_thing_map: Dict,
|
519 |
+
threshold=0.85,
|
520 |
+
) -> Dict:
|
521 |
+
"""
|
522 |
+
Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample.
|
523 |
+
|
524 |
+
Args:
|
525 |
+
out_logits (`torch.Tensor`):
|
526 |
+
The logits for this sample.
|
527 |
+
masks (`torch.Tensor`):
|
528 |
+
The predicted segmentation masks for this sample.
|
529 |
+
boxes (`torch.Tensor`):
|
530 |
+
The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
|
531 |
+
width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
|
532 |
+
processed_size (`Tuple[int, int]`):
|
533 |
+
The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
|
534 |
+
after data augmentation but before batching.
|
535 |
+
target_size (`Tuple[int, int]`):
|
536 |
+
The target size of the image, `(height, width)` corresponding to the requested final size of the
|
537 |
+
prediction.
|
538 |
+
is_thing_map (`Dict`):
|
539 |
+
A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
|
540 |
+
threshold (`float`, *optional*, defaults to 0.85):
|
541 |
+
The threshold used to binarize the segmentation masks.
|
542 |
+
"""
|
543 |
+
# we filter empty queries and detection below threshold
|
544 |
+
scores, labels = score_labels_from_class_probabilities(out_logits)
|
545 |
+
keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)
|
546 |
+
|
547 |
+
cur_scores = scores[keep]
|
548 |
+
cur_classes = labels[keep]
|
549 |
+
cur_boxes = center_to_corners_format(boxes[keep])
|
550 |
+
|
551 |
+
if len(cur_boxes) != len(cur_classes):
|
552 |
+
raise ValueError("Not as many boxes as there are classes")
|
553 |
+
|
554 |
+
cur_masks = masks[keep]
|
555 |
+
cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
|
556 |
+
cur_masks = safe_squeeze(cur_masks, 1)
|
557 |
+
b, h, w = cur_masks.shape
|
558 |
+
|
559 |
+
# It may be that we have several predicted masks for the same stuff class.
|
560 |
+
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
|
561 |
+
cur_masks = cur_masks.reshape(b, -1)
|
562 |
+
stuff_equiv_classes = defaultdict(list)
|
563 |
+
for k, label in enumerate(cur_classes):
|
564 |
+
if not is_thing_map[label]:
|
565 |
+
stuff_equiv_classes[label].append(k)
|
566 |
+
|
567 |
+
seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
|
568 |
+
area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))
|
569 |
+
|
570 |
+
# We filter out any mask that is too small
|
571 |
+
if cur_classes.size() > 0:
|
572 |
+
# We know filter empty masks as long as we find some
|
573 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
574 |
+
while filtered_small.any():
|
575 |
+
cur_masks = cur_masks[~filtered_small]
|
576 |
+
cur_scores = cur_scores[~filtered_small]
|
577 |
+
cur_classes = cur_classes[~filtered_small]
|
578 |
+
seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
|
579 |
+
area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
|
580 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
581 |
+
else:
|
582 |
+
cur_classes = np.ones((1, 1), dtype=np.int64)
|
583 |
+
|
584 |
+
segments_info = [
|
585 |
+
{"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
|
586 |
+
for i, (cat, a) in enumerate(zip(cur_classes, area))
|
587 |
+
]
|
588 |
+
del cur_classes
|
589 |
+
|
590 |
+
with io.BytesIO() as out:
|
591 |
+
PIL.Image.fromarray(seg_img).save(out, format="PNG")
|
592 |
+
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
|
593 |
+
|
594 |
+
return predictions
|
595 |
+
|
596 |
+
|
597 |
+
# Copied from transformers.models.detr.image_processing_detr.resize_annotation
|
598 |
+
def resize_annotation(
|
599 |
+
annotation: Dict[str, Any],
|
600 |
+
orig_size: Tuple[int, int],
|
601 |
+
target_size: Tuple[int, int],
|
602 |
+
threshold: float = 0.5,
|
603 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
604 |
+
):
|
605 |
+
"""
|
606 |
+
Resizes an annotation to a target size.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
annotation (`Dict[str, Any]`):
|
610 |
+
The annotation dictionary.
|
611 |
+
orig_size (`Tuple[int, int]`):
|
612 |
+
The original size of the input image.
|
613 |
+
target_size (`Tuple[int, int]`):
|
614 |
+
The target size of the image, as returned by the preprocessing `resize` step.
|
615 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
616 |
+
The threshold used to binarize the segmentation masks.
|
617 |
+
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
|
618 |
+
The resampling filter to use when resizing the masks.
|
619 |
+
"""
|
620 |
+
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
|
621 |
+
ratio_height, ratio_width = ratios
|
622 |
+
|
623 |
+
new_annotation = {}
|
624 |
+
new_annotation["size"] = target_size
|
625 |
+
|
626 |
+
for key, value in annotation.items():
|
627 |
+
if key == "boxes":
|
628 |
+
boxes = value
|
629 |
+
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
|
630 |
+
new_annotation["boxes"] = scaled_boxes
|
631 |
+
elif key == "area":
|
632 |
+
area = value
|
633 |
+
scaled_area = area * (ratio_width * ratio_height)
|
634 |
+
new_annotation["area"] = scaled_area
|
635 |
+
elif key == "masks":
|
636 |
+
masks = value[:, None]
|
637 |
+
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
|
638 |
+
masks = masks.astype(np.float32)
|
639 |
+
masks = masks[:, 0] > threshold
|
640 |
+
new_annotation["masks"] = masks
|
641 |
+
elif key == "size":
|
642 |
+
new_annotation["size"] = target_size
|
643 |
+
else:
|
644 |
+
new_annotation[key] = value
|
645 |
+
|
646 |
+
return new_annotation
|
647 |
+
|
648 |
+
|
649 |
+
# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
|
650 |
+
def binary_mask_to_rle(mask):
|
651 |
+
"""
|
652 |
+
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
mask (`torch.Tensor` or `numpy.array`):
|
656 |
+
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
|
657 |
+
segment_id or class_id.
|
658 |
+
Returns:
|
659 |
+
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
|
660 |
+
format.
|
661 |
+
"""
|
662 |
+
if is_torch_tensor(mask):
|
663 |
+
mask = mask.numpy()
|
664 |
+
|
665 |
+
pixels = mask.flatten()
|
666 |
+
pixels = np.concatenate([[0], pixels, [0]])
|
667 |
+
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
|
668 |
+
runs[1::2] -= runs[::2]
|
669 |
+
return list(runs)
|
670 |
+
|
671 |
+
|
672 |
+
# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
|
673 |
+
def convert_segmentation_to_rle(segmentation):
|
674 |
+
"""
|
675 |
+
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
|
676 |
+
|
677 |
+
Args:
|
678 |
+
segmentation (`torch.Tensor` or `numpy.array`):
|
679 |
+
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
|
680 |
+
Returns:
|
681 |
+
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
|
682 |
+
"""
|
683 |
+
segment_ids = torch.unique(segmentation)
|
684 |
+
|
685 |
+
run_length_encodings = []
|
686 |
+
for idx in segment_ids:
|
687 |
+
mask = torch.where(segmentation == idx, 1, 0)
|
688 |
+
rle = binary_mask_to_rle(mask)
|
689 |
+
run_length_encodings.append(rle)
|
690 |
+
|
691 |
+
return run_length_encodings
|
692 |
+
|
693 |
+
|
694 |
+
# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
|
695 |
+
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
|
696 |
+
"""
|
697 |
+
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
|
698 |
+
`labels`.
|
699 |
+
|
700 |
+
Args:
|
701 |
+
masks (`torch.Tensor`):
|
702 |
+
A tensor of shape `(num_queries, height, width)`.
|
703 |
+
scores (`torch.Tensor`):
|
704 |
+
A tensor of shape `(num_queries)`.
|
705 |
+
labels (`torch.Tensor`):
|
706 |
+
A tensor of shape `(num_queries)`.
|
707 |
+
object_mask_threshold (`float`):
|
708 |
+
A number between 0 and 1 used to binarize the masks.
|
709 |
+
Raises:
|
710 |
+
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
|
711 |
+
Returns:
|
712 |
+
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
|
713 |
+
< `object_mask_threshold`.
|
714 |
+
"""
|
715 |
+
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
|
716 |
+
raise ValueError("mask, scores and labels must have the same shape!")
|
717 |
+
|
718 |
+
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
|
719 |
+
|
720 |
+
return masks[to_keep], scores[to_keep], labels[to_keep]
|
721 |
+
|
722 |
+
|
723 |
+
# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
|
724 |
+
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
|
725 |
+
# Get the mask associated with the k class
|
726 |
+
mask_k = mask_labels == k
|
727 |
+
mask_k_area = mask_k.sum()
|
728 |
+
|
729 |
+
# Compute the area of all the stuff in query k
|
730 |
+
original_area = (mask_probs[k] >= mask_threshold).sum()
|
731 |
+
mask_exists = mask_k_area > 0 and original_area > 0
|
732 |
+
|
733 |
+
# Eliminate disconnected tiny segments
|
734 |
+
if mask_exists:
|
735 |
+
area_ratio = mask_k_area / original_area
|
736 |
+
if not area_ratio.item() > overlap_mask_area_threshold:
|
737 |
+
mask_exists = False
|
738 |
+
|
739 |
+
return mask_exists, mask_k
|
740 |
+
|
741 |
+
|
742 |
+
# Copied from transformers.models.detr.image_processing_detr.compute_segments
|
743 |
+
def compute_segments(
|
744 |
+
mask_probs,
|
745 |
+
pred_scores,
|
746 |
+
pred_labels,
|
747 |
+
mask_threshold: float = 0.5,
|
748 |
+
overlap_mask_area_threshold: float = 0.8,
|
749 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
750 |
+
target_size: Tuple[int, int] = None,
|
751 |
+
):
|
752 |
+
height = mask_probs.shape[1] if target_size is None else target_size[0]
|
753 |
+
width = mask_probs.shape[2] if target_size is None else target_size[1]
|
754 |
+
|
755 |
+
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
|
756 |
+
segments: List[Dict] = []
|
757 |
+
|
758 |
+
if target_size is not None:
|
759 |
+
mask_probs = nn.functional.interpolate(
|
760 |
+
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
|
761 |
+
)[0]
|
762 |
+
|
763 |
+
current_segment_id = 0
|
764 |
+
|
765 |
+
# Weigh each mask by its prediction score
|
766 |
+
mask_probs *= pred_scores.view(-1, 1, 1)
|
767 |
+
mask_labels = mask_probs.argmax(0) # [height, width]
|
768 |
+
|
769 |
+
# Keep track of instances of each class
|
770 |
+
stuff_memory_list: Dict[str, int] = {}
|
771 |
+
for k in range(pred_labels.shape[0]):
|
772 |
+
pred_class = pred_labels[k].item()
|
773 |
+
should_fuse = pred_class in label_ids_to_fuse
|
774 |
+
|
775 |
+
# Check if mask exists and large enough to be a segment
|
776 |
+
mask_exists, mask_k = check_segment_validity(
|
777 |
+
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
|
778 |
+
)
|
779 |
+
|
780 |
+
if mask_exists:
|
781 |
+
if pred_class in stuff_memory_list:
|
782 |
+
current_segment_id = stuff_memory_list[pred_class]
|
783 |
+
else:
|
784 |
+
current_segment_id += 1
|
785 |
+
|
786 |
+
# Add current object segment to final segmentation map
|
787 |
+
segmentation[mask_k] = current_segment_id
|
788 |
+
segment_score = round(pred_scores[k].item(), 6)
|
789 |
+
segments.append(
|
790 |
+
{
|
791 |
+
"id": current_segment_id,
|
792 |
+
"label_id": pred_class,
|
793 |
+
"was_fused": should_fuse,
|
794 |
+
"score": segment_score,
|
795 |
+
}
|
796 |
+
)
|
797 |
+
if should_fuse:
|
798 |
+
stuff_memory_list[pred_class] = current_segment_id
|
799 |
+
|
800 |
+
return segmentation, segments
|
801 |
+
|
802 |
+
|
803 |
+
class DiffusionDetImageProcessor(BaseImageProcessor):
|
804 |
+
r"""
|
805 |
+
Constructs a DiffusionDet image processor.
|
806 |
+
|
807 |
+
Args:
|
808 |
+
format (`str`, *optional*, defaults to `"coco_detection"`):
|
809 |
+
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
|
810 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
811 |
+
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
|
812 |
+
overridden by the `do_resize` parameter in the `preprocess` method.
|
813 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
|
814 |
+
Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter
|
815 |
+
in the `preprocess` method. Available options are:
|
816 |
+
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
|
817 |
+
Do NOT keep the aspect ratio.
|
818 |
+
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
|
819 |
+
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
|
820 |
+
less or equal to `longest_edge`.
|
821 |
+
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
|
822 |
+
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
|
823 |
+
`max_width`.
|
824 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
825 |
+
Resampling filter to use if resizing the image.
|
826 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
827 |
+
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
828 |
+
`do_rescale` parameter in the `preprocess` method.
|
829 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
830 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
831 |
+
`preprocess` method.
|
832 |
+
do_normalize:
|
833 |
+
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
|
834 |
+
`preprocess` method.
|
835 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
|
836 |
+
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
|
837 |
+
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
838 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
|
839 |
+
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
|
840 |
+
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
841 |
+
do_convert_annotations (`bool`, *optional*, defaults to `True`):
|
842 |
+
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
|
843 |
+
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
|
844 |
+
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
|
845 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
846 |
+
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
|
847 |
+
method. If `True`, padding will be applied to the bottom and right of the image with zeros.
|
848 |
+
If `pad_size` is provided, the image will be padded to the specified dimensions.
|
849 |
+
Otherwise, the image will be padded to the maximum height and width of the batch.
|
850 |
+
pad_size (`Dict[str, int]`, *optional*):
|
851 |
+
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
|
852 |
+
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
|
853 |
+
height and width in the batch.
|
854 |
+
"""
|
855 |
+
|
856 |
+
model_input_names = ["pixel_values", "pixel_mask"]
|
857 |
+
|
858 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__
|
859 |
+
def __init__(
|
860 |
+
self,
|
861 |
+
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
|
862 |
+
do_resize: bool = True,
|
863 |
+
size: Dict[str, int] = None,
|
864 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
865 |
+
do_rescale: bool = True,
|
866 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
867 |
+
do_normalize: bool = True,
|
868 |
+
image_mean: Union[float, List[float]] = None,
|
869 |
+
image_std: Union[float, List[float]] = None,
|
870 |
+
do_convert_annotations: Optional[bool] = None,
|
871 |
+
do_pad: bool = True,
|
872 |
+
pad_size: Optional[Dict[str, int]] = None,
|
873 |
+
**kwargs,
|
874 |
+
) -> None:
|
875 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
876 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
877 |
+
|
878 |
+
if "max_size" in kwargs:
|
879 |
+
logger.warning_once(
|
880 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
881 |
+
"Please specify in `size['longest_edge'] instead`.",
|
882 |
+
)
|
883 |
+
max_size = kwargs.pop("max_size")
|
884 |
+
else:
|
885 |
+
max_size = None if size is None else 1333
|
886 |
+
|
887 |
+
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
|
888 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
889 |
+
|
890 |
+
# Backwards compatibility
|
891 |
+
if do_convert_annotations is None:
|
892 |
+
do_convert_annotations = do_normalize
|
893 |
+
|
894 |
+
super().__init__(**kwargs)
|
895 |
+
self.format = format
|
896 |
+
self.do_resize = do_resize
|
897 |
+
self.size = size
|
898 |
+
self.resample = resample
|
899 |
+
self.do_rescale = do_rescale
|
900 |
+
self.rescale_factor = rescale_factor
|
901 |
+
self.do_normalize = do_normalize
|
902 |
+
self.do_convert_annotations = do_convert_annotations
|
903 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
904 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
905 |
+
self.do_pad = do_pad
|
906 |
+
self.pad_size = pad_size
|
907 |
+
self._valid_processor_keys = [
|
908 |
+
"images",
|
909 |
+
"annotations",
|
910 |
+
"return_segmentation_masks",
|
911 |
+
"masks_path",
|
912 |
+
"do_resize",
|
913 |
+
"size",
|
914 |
+
"resample",
|
915 |
+
"do_rescale",
|
916 |
+
"rescale_factor",
|
917 |
+
"do_normalize",
|
918 |
+
"do_convert_annotations",
|
919 |
+
"image_mean",
|
920 |
+
"image_std",
|
921 |
+
"do_pad",
|
922 |
+
"pad_size",
|
923 |
+
"format",
|
924 |
+
"return_tensors",
|
925 |
+
"data_format",
|
926 |
+
"input_data_format",
|
927 |
+
]
|
928 |
+
|
929 |
+
@classmethod
|
930 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->DeformableDetr
|
931 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
932 |
+
"""
|
933 |
+
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
|
934 |
+
created using from_dict and kwargs e.g. `DeformableDetrImageProcessor.from_pretrained(checkpoint, size=600,
|
935 |
+
max_size=800)`
|
936 |
+
"""
|
937 |
+
image_processor_dict = image_processor_dict.copy()
|
938 |
+
if "max_size" in kwargs:
|
939 |
+
image_processor_dict["max_size"] = kwargs.pop("max_size")
|
940 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
941 |
+
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
|
942 |
+
return super().from_dict(image_processor_dict, **kwargs)
|
943 |
+
|
944 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DeformableDetr
|
945 |
+
def prepare_annotation(
|
946 |
+
self,
|
947 |
+
image: np.ndarray,
|
948 |
+
target: Dict,
|
949 |
+
format: Optional[AnnotationFormat] = None,
|
950 |
+
return_segmentation_masks: bool = None,
|
951 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
952 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
953 |
+
) -> Dict:
|
954 |
+
"""
|
955 |
+
Prepare an annotation for feeding into DeformableDetr model.
|
956 |
+
"""
|
957 |
+
format = format if format is not None else self.format
|
958 |
+
|
959 |
+
if format == AnnotationFormat.COCO_DETECTION:
|
960 |
+
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
|
961 |
+
target = prepare_coco_detection_annotation(
|
962 |
+
image, target, return_segmentation_masks, input_data_format=input_data_format
|
963 |
+
)
|
964 |
+
elif format == AnnotationFormat.COCO_PANOPTIC:
|
965 |
+
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
|
966 |
+
target = prepare_coco_panoptic_annotation(
|
967 |
+
image,
|
968 |
+
target,
|
969 |
+
masks_path=masks_path,
|
970 |
+
return_masks=return_segmentation_masks,
|
971 |
+
input_data_format=input_data_format,
|
972 |
+
)
|
973 |
+
else:
|
974 |
+
raise ValueError(f"Format {format} is not supported.")
|
975 |
+
return target
|
976 |
+
|
977 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
|
978 |
+
def resize(
|
979 |
+
self,
|
980 |
+
image: np.ndarray,
|
981 |
+
size: Dict[str, int],
|
982 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
983 |
+
data_format: Optional[ChannelDimension] = None,
|
984 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
985 |
+
**kwargs,
|
986 |
+
) -> np.ndarray:
|
987 |
+
"""
|
988 |
+
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
|
989 |
+
int, smaller edge of the image will be matched to this number.
|
990 |
+
|
991 |
+
Args:
|
992 |
+
image (`np.ndarray`):
|
993 |
+
Image to resize.
|
994 |
+
size (`Dict[str, int]`):
|
995 |
+
Size of the image's `(height, width)` dimensions after resizing. Available options are:
|
996 |
+
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
|
997 |
+
Do NOT keep the aspect ratio.
|
998 |
+
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
|
999 |
+
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
|
1000 |
+
less or equal to `longest_edge`.
|
1001 |
+
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
|
1002 |
+
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
|
1003 |
+
`max_width`.
|
1004 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
1005 |
+
Resampling filter to use if resizing the image.
|
1006 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1007 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
1008 |
+
image is used.
|
1009 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1010 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
1011 |
+
"""
|
1012 |
+
if "max_size" in kwargs:
|
1013 |
+
logger.warning_once(
|
1014 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
1015 |
+
"Please specify in `size['longest_edge'] instead`.",
|
1016 |
+
)
|
1017 |
+
max_size = kwargs.pop("max_size")
|
1018 |
+
else:
|
1019 |
+
max_size = None
|
1020 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
1021 |
+
if "shortest_edge" in size and "longest_edge" in size:
|
1022 |
+
new_size = get_resize_output_image_size(
|
1023 |
+
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
|
1024 |
+
)
|
1025 |
+
elif "max_height" in size and "max_width" in size:
|
1026 |
+
new_size = get_image_size_for_max_height_width(
|
1027 |
+
image, size["max_height"], size["max_width"], input_data_format=input_data_format
|
1028 |
+
)
|
1029 |
+
elif "height" in size and "width" in size:
|
1030 |
+
new_size = (size["height"], size["width"])
|
1031 |
+
else:
|
1032 |
+
raise ValueError(
|
1033 |
+
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
|
1034 |
+
f" {size.keys()}."
|
1035 |
+
)
|
1036 |
+
image = resize(
|
1037 |
+
image,
|
1038 |
+
size=new_size,
|
1039 |
+
resample=resample,
|
1040 |
+
data_format=data_format,
|
1041 |
+
input_data_format=input_data_format,
|
1042 |
+
**kwargs,
|
1043 |
+
)
|
1044 |
+
return image
|
1045 |
+
|
1046 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
|
1047 |
+
def resize_annotation(
|
1048 |
+
self,
|
1049 |
+
annotation,
|
1050 |
+
orig_size,
|
1051 |
+
size,
|
1052 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
1053 |
+
) -> Dict:
|
1054 |
+
"""
|
1055 |
+
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
|
1056 |
+
to this number.
|
1057 |
+
"""
|
1058 |
+
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
|
1059 |
+
|
1060 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
|
1061 |
+
def rescale(
|
1062 |
+
self,
|
1063 |
+
image: np.ndarray,
|
1064 |
+
rescale_factor: float,
|
1065 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
1066 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1067 |
+
) -> np.ndarray:
|
1068 |
+
"""
|
1069 |
+
Rescale the image by the given factor. image = image * rescale_factor.
|
1070 |
+
|
1071 |
+
Args:
|
1072 |
+
image (`np.ndarray`):
|
1073 |
+
Image to rescale.
|
1074 |
+
rescale_factor (`float`):
|
1075 |
+
The value to use for rescaling.
|
1076 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1077 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
1078 |
+
image is used. Can be one of:
|
1079 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1080 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1081 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
1082 |
+
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
|
1083 |
+
one of:
|
1084 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1085 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1086 |
+
"""
|
1087 |
+
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
|
1088 |
+
|
1089 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
|
1090 |
+
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
1091 |
+
"""
|
1092 |
+
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
|
1093 |
+
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
|
1094 |
+
"""
|
1095 |
+
return normalize_annotation(annotation, image_size=image_size)
|
1096 |
+
|
1097 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image
|
1098 |
+
def _update_annotation_for_padded_image(
|
1099 |
+
self,
|
1100 |
+
annotation: Dict,
|
1101 |
+
input_image_size: Tuple[int, int],
|
1102 |
+
output_image_size: Tuple[int, int],
|
1103 |
+
padding,
|
1104 |
+
update_bboxes,
|
1105 |
+
) -> Dict:
|
1106 |
+
"""
|
1107 |
+
Update the annotation for a padded image.
|
1108 |
+
"""
|
1109 |
+
new_annotation = {}
|
1110 |
+
new_annotation["size"] = output_image_size
|
1111 |
+
|
1112 |
+
for key, value in annotation.items():
|
1113 |
+
if key == "masks":
|
1114 |
+
masks = value
|
1115 |
+
masks = pad(
|
1116 |
+
masks,
|
1117 |
+
padding,
|
1118 |
+
mode=PaddingMode.CONSTANT,
|
1119 |
+
constant_values=0,
|
1120 |
+
input_data_format=ChannelDimension.FIRST,
|
1121 |
+
)
|
1122 |
+
masks = safe_squeeze(masks, 1)
|
1123 |
+
new_annotation["masks"] = masks
|
1124 |
+
elif key == "boxes" and update_bboxes:
|
1125 |
+
boxes = value
|
1126 |
+
boxes *= np.asarray(
|
1127 |
+
[
|
1128 |
+
input_image_size[1] / output_image_size[1],
|
1129 |
+
input_image_size[0] / output_image_size[0],
|
1130 |
+
input_image_size[1] / output_image_size[1],
|
1131 |
+
input_image_size[0] / output_image_size[0],
|
1132 |
+
]
|
1133 |
+
)
|
1134 |
+
new_annotation["boxes"] = boxes
|
1135 |
+
elif key == "size":
|
1136 |
+
new_annotation["size"] = output_image_size
|
1137 |
+
else:
|
1138 |
+
new_annotation[key] = value
|
1139 |
+
return new_annotation
|
1140 |
+
|
1141 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
|
1142 |
+
def _pad_image(
|
1143 |
+
self,
|
1144 |
+
image: np.ndarray,
|
1145 |
+
output_size: Tuple[int, int],
|
1146 |
+
annotation: Optional[Dict[str, Any]] = None,
|
1147 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1148 |
+
data_format: Optional[ChannelDimension] = None,
|
1149 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1150 |
+
update_bboxes: bool = True,
|
1151 |
+
) -> np.ndarray:
|
1152 |
+
"""
|
1153 |
+
Pad an image with zeros to the given size.
|
1154 |
+
"""
|
1155 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
1156 |
+
output_height, output_width = output_size
|
1157 |
+
|
1158 |
+
pad_bottom = output_height - input_height
|
1159 |
+
pad_right = output_width - input_width
|
1160 |
+
padding = ((0, pad_bottom), (0, pad_right))
|
1161 |
+
padded_image = pad(
|
1162 |
+
image,
|
1163 |
+
padding,
|
1164 |
+
mode=PaddingMode.CONSTANT,
|
1165 |
+
constant_values=constant_values,
|
1166 |
+
data_format=data_format,
|
1167 |
+
input_data_format=input_data_format,
|
1168 |
+
)
|
1169 |
+
if annotation is not None:
|
1170 |
+
annotation = self._update_annotation_for_padded_image(
|
1171 |
+
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
|
1172 |
+
)
|
1173 |
+
return padded_image, annotation
|
1174 |
+
|
1175 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
|
1176 |
+
def pad(
|
1177 |
+
self,
|
1178 |
+
images: List[np.ndarray],
|
1179 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1180 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1181 |
+
return_pixel_mask: bool = True,
|
1182 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
1183 |
+
data_format: Optional[ChannelDimension] = None,
|
1184 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1185 |
+
update_bboxes: bool = True,
|
1186 |
+
pad_size: Optional[Dict[str, int]] = None,
|
1187 |
+
) -> BatchFeature:
|
1188 |
+
"""
|
1189 |
+
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
|
1190 |
+
in the batch and optionally returns their corresponding pixel mask.
|
1191 |
+
|
1192 |
+
Args:
|
1193 |
+
images (List[`np.ndarray`]):
|
1194 |
+
Images to pad.
|
1195 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1196 |
+
Annotations to transform according to the padding that is applied to the images.
|
1197 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
1198 |
+
The value to use for the padding if `mode` is `"constant"`.
|
1199 |
+
return_pixel_mask (`bool`, *optional*, defaults to `True`):
|
1200 |
+
Whether to return a pixel mask.
|
1201 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
1202 |
+
The type of tensors to return. Can be one of:
|
1203 |
+
- Unset: Return a list of `np.ndarray`.
|
1204 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
1205 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
1206 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
1207 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
1208 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1209 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
1210 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1211 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
1212 |
+
update_bboxes (`bool`, *optional*, defaults to `True`):
|
1213 |
+
Whether to update the bounding boxes in the annotations to match the padded images. If the
|
1214 |
+
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
|
1215 |
+
format, the bounding boxes will not be updated.
|
1216 |
+
pad_size (`Dict[str, int]`, *optional*):
|
1217 |
+
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
|
1218 |
+
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
|
1219 |
+
height and width in the batch.
|
1220 |
+
"""
|
1221 |
+
pad_size = pad_size if pad_size is not None else self.pad_size
|
1222 |
+
if pad_size is not None:
|
1223 |
+
padded_size = (pad_size["height"], pad_size["width"])
|
1224 |
+
else:
|
1225 |
+
padded_size = get_max_height_width(images, input_data_format=input_data_format)
|
1226 |
+
|
1227 |
+
annotation_list = annotations if annotations is not None else [None] * len(images)
|
1228 |
+
padded_images = []
|
1229 |
+
padded_annotations = []
|
1230 |
+
for image, annotation in zip(images, annotation_list):
|
1231 |
+
padded_image, padded_annotation = self._pad_image(
|
1232 |
+
image,
|
1233 |
+
padded_size,
|
1234 |
+
annotation,
|
1235 |
+
constant_values=constant_values,
|
1236 |
+
data_format=data_format,
|
1237 |
+
input_data_format=input_data_format,
|
1238 |
+
update_bboxes=update_bboxes,
|
1239 |
+
)
|
1240 |
+
padded_images.append(padded_image)
|
1241 |
+
padded_annotations.append(padded_annotation)
|
1242 |
+
|
1243 |
+
data = {"pixel_values": padded_images}
|
1244 |
+
|
1245 |
+
if return_pixel_mask:
|
1246 |
+
masks = [
|
1247 |
+
make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format)
|
1248 |
+
for image in images
|
1249 |
+
]
|
1250 |
+
data["pixel_mask"] = masks
|
1251 |
+
|
1252 |
+
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
|
1253 |
+
|
1254 |
+
if annotations is not None:
|
1255 |
+
encoded_inputs["labels"] = [
|
1256 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
|
1257 |
+
]
|
1258 |
+
|
1259 |
+
return encoded_inputs
|
1260 |
+
|
1261 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess
|
1262 |
+
def preprocess(
|
1263 |
+
self,
|
1264 |
+
images: ImageInput,
|
1265 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1266 |
+
return_segmentation_masks: bool = None,
|
1267 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
1268 |
+
do_resize: Optional[bool] = None,
|
1269 |
+
size: Optional[Dict[str, int]] = None,
|
1270 |
+
resample=None, # PILImageResampling
|
1271 |
+
do_rescale: Optional[bool] = None,
|
1272 |
+
rescale_factor: Optional[Union[int, float]] = None,
|
1273 |
+
do_normalize: Optional[bool] = None,
|
1274 |
+
do_convert_annotations: Optional[bool] = None,
|
1275 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
1276 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
1277 |
+
do_pad: Optional[bool] = None,
|
1278 |
+
format: Optional[Union[str, AnnotationFormat]] = None,
|
1279 |
+
return_tensors: Optional[Union[TensorType, str]] = None,
|
1280 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
1281 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1282 |
+
pad_size: Optional[Dict[str, int]] = None,
|
1283 |
+
**kwargs,
|
1284 |
+
) -> BatchFeature:
|
1285 |
+
"""
|
1286 |
+
Preprocess an image or a batch of images so that it can be used by the model.
|
1287 |
+
|
1288 |
+
Args:
|
1289 |
+
images (`ImageInput`):
|
1290 |
+
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
|
1291 |
+
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
1292 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1293 |
+
List of annotations associated with the image or batch of images. If annotation is for object
|
1294 |
+
detection, the annotations should be a dictionary with the following keys:
|
1295 |
+
- "image_id" (`int`): The image id.
|
1296 |
+
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
|
1297 |
+
dictionary. An image can have no annotations, in which case the list should be empty.
|
1298 |
+
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
|
1299 |
+
- "image_id" (`int`): The image id.
|
1300 |
+
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
|
1301 |
+
An image can have no segments, in which case the list should be empty.
|
1302 |
+
- "file_name" (`str`): The file name of the image.
|
1303 |
+
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
|
1304 |
+
Whether to return segmentation masks.
|
1305 |
+
masks_path (`str` or `pathlib.Path`, *optional*):
|
1306 |
+
Path to the directory containing the segmentation masks.
|
1307 |
+
do_resize (`bool`, *optional*, defaults to self.do_resize):
|
1308 |
+
Whether to resize the image.
|
1309 |
+
size (`Dict[str, int]`, *optional*, defaults to self.size):
|
1310 |
+
Size of the image's `(height, width)` dimensions after resizing. Available options are:
|
1311 |
+
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
|
1312 |
+
Do NOT keep the aspect ratio.
|
1313 |
+
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
|
1314 |
+
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
|
1315 |
+
less or equal to `longest_edge`.
|
1316 |
+
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
|
1317 |
+
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
|
1318 |
+
`max_width`.
|
1319 |
+
resample (`PILImageResampling`, *optional*, defaults to self.resample):
|
1320 |
+
Resampling filter to use when resizing the image.
|
1321 |
+
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
|
1322 |
+
Whether to rescale the image.
|
1323 |
+
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
|
1324 |
+
Rescale factor to use when rescaling the image.
|
1325 |
+
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
|
1326 |
+
Whether to normalize the image.
|
1327 |
+
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
|
1328 |
+
Whether to convert the annotations to the format expected by the model. Converts the bounding
|
1329 |
+
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
|
1330 |
+
and in relative coordinates.
|
1331 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
|
1332 |
+
Mean to use when normalizing the image.
|
1333 |
+
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
|
1334 |
+
Standard deviation to use when normalizing the image.
|
1335 |
+
do_pad (`bool`, *optional*, defaults to self.do_pad):
|
1336 |
+
Whether to pad the image. If `True`, padding will be applied to the bottom and right of
|
1337 |
+
the image with zeros. If `pad_size` is provided, the image will be padded to the specified
|
1338 |
+
dimensions. Otherwise, the image will be padded to the maximum height and width of the batch.
|
1339 |
+
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
|
1340 |
+
Format of the annotations.
|
1341 |
+
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
|
1342 |
+
Type of tensors to return. If `None`, will return the list of images.
|
1343 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
1344 |
+
The channel dimension format for the output image. Can be one of:
|
1345 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1346 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1347 |
+
- Unset: Use the channel dimension format of the input image.
|
1348 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1349 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
1350 |
+
from the input image. Can be one of:
|
1351 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1352 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1353 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
1354 |
+
pad_size (`Dict[str, int]`, *optional*):
|
1355 |
+
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
|
1356 |
+
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
|
1357 |
+
height and width in the batch.
|
1358 |
+
"""
|
1359 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
1360 |
+
logger.warning_once(
|
1361 |
+
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
|
1362 |
+
"use `do_pad` instead."
|
1363 |
+
)
|
1364 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
1365 |
+
|
1366 |
+
if "max_size" in kwargs:
|
1367 |
+
logger.warning_once(
|
1368 |
+
"The `max_size` argument is deprecated and will be removed in a future version, use"
|
1369 |
+
" `size['longest_edge']` instead."
|
1370 |
+
)
|
1371 |
+
size = kwargs.pop("max_size")
|
1372 |
+
|
1373 |
+
do_resize = self.do_resize if do_resize is None else do_resize
|
1374 |
+
size = self.size if size is None else size
|
1375 |
+
size = get_size_dict(size=size, default_to_square=False)
|
1376 |
+
resample = self.resample if resample is None else resample
|
1377 |
+
do_rescale = self.do_rescale if do_rescale is None else do_rescale
|
1378 |
+
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
|
1379 |
+
do_normalize = self.do_normalize if do_normalize is None else do_normalize
|
1380 |
+
image_mean = self.image_mean if image_mean is None else image_mean
|
1381 |
+
image_std = self.image_std if image_std is None else image_std
|
1382 |
+
do_convert_annotations = (
|
1383 |
+
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
|
1384 |
+
)
|
1385 |
+
do_pad = self.do_pad if do_pad is None else do_pad
|
1386 |
+
pad_size = self.pad_size if pad_size is None else pad_size
|
1387 |
+
format = self.format if format is None else format
|
1388 |
+
|
1389 |
+
images = make_list_of_images(images)
|
1390 |
+
|
1391 |
+
if not valid_images(images):
|
1392 |
+
raise ValueError(
|
1393 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
1394 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
1395 |
+
)
|
1396 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
1397 |
+
|
1398 |
+
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
|
1399 |
+
validate_preprocess_arguments(
|
1400 |
+
do_rescale=do_rescale,
|
1401 |
+
rescale_factor=rescale_factor,
|
1402 |
+
do_normalize=do_normalize,
|
1403 |
+
image_mean=image_mean,
|
1404 |
+
image_std=image_std,
|
1405 |
+
do_resize=do_resize,
|
1406 |
+
size=size,
|
1407 |
+
resample=resample,
|
1408 |
+
)
|
1409 |
+
|
1410 |
+
if annotations is not None and isinstance(annotations, dict):
|
1411 |
+
annotations = [annotations]
|
1412 |
+
|
1413 |
+
if annotations is not None and len(images) != len(annotations):
|
1414 |
+
raise ValueError(
|
1415 |
+
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
|
1416 |
+
)
|
1417 |
+
|
1418 |
+
format = AnnotationFormat(format)
|
1419 |
+
if annotations is not None:
|
1420 |
+
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
|
1421 |
+
|
1422 |
+
if (
|
1423 |
+
masks_path is not None
|
1424 |
+
and format == AnnotationFormat.COCO_PANOPTIC
|
1425 |
+
and not isinstance(masks_path, (pathlib.Path, str))
|
1426 |
+
):
|
1427 |
+
raise ValueError(
|
1428 |
+
"The path to the directory containing the mask PNG files should be provided as a"
|
1429 |
+
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
|
1430 |
+
)
|
1431 |
+
|
1432 |
+
# All transformations expect numpy arrays
|
1433 |
+
images = [to_numpy_array(image) for image in images]
|
1434 |
+
|
1435 |
+
if is_scaled_image(images[0]) and do_rescale:
|
1436 |
+
logger.warning_once(
|
1437 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
1438 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
if input_data_format is None:
|
1442 |
+
# We assume that all images have the same channel dimension format.
|
1443 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
1444 |
+
|
1445 |
+
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
|
1446 |
+
if annotations is not None:
|
1447 |
+
prepared_images = []
|
1448 |
+
prepared_annotations = []
|
1449 |
+
for image, target in zip(images, annotations):
|
1450 |
+
target = self.prepare_annotation(
|
1451 |
+
image,
|
1452 |
+
target,
|
1453 |
+
format,
|
1454 |
+
return_segmentation_masks=return_segmentation_masks,
|
1455 |
+
masks_path=masks_path,
|
1456 |
+
input_data_format=input_data_format,
|
1457 |
+
)
|
1458 |
+
prepared_images.append(image)
|
1459 |
+
prepared_annotations.append(target)
|
1460 |
+
images = prepared_images
|
1461 |
+
annotations = prepared_annotations
|
1462 |
+
del prepared_images, prepared_annotations
|
1463 |
+
|
1464 |
+
# transformations
|
1465 |
+
if do_resize:
|
1466 |
+
if annotations is not None:
|
1467 |
+
resized_images, resized_annotations = [], []
|
1468 |
+
for image, target in zip(images, annotations):
|
1469 |
+
orig_size = get_image_size(image, input_data_format)
|
1470 |
+
resized_image = self.resize(
|
1471 |
+
image, size=size, resample=resample, input_data_format=input_data_format
|
1472 |
+
)
|
1473 |
+
resized_annotation = self.resize_annotation(
|
1474 |
+
target, orig_size, get_image_size(resized_image, input_data_format)
|
1475 |
+
)
|
1476 |
+
resized_images.append(resized_image)
|
1477 |
+
resized_annotations.append(resized_annotation)
|
1478 |
+
images = resized_images
|
1479 |
+
annotations = resized_annotations
|
1480 |
+
del resized_images, resized_annotations
|
1481 |
+
else:
|
1482 |
+
images = [
|
1483 |
+
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
|
1484 |
+
for image in images
|
1485 |
+
]
|
1486 |
+
|
1487 |
+
if do_rescale:
|
1488 |
+
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
|
1489 |
+
|
1490 |
+
if do_normalize:
|
1491 |
+
images = [
|
1492 |
+
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
|
1493 |
+
]
|
1494 |
+
|
1495 |
+
if do_convert_annotations and annotations is not None:
|
1496 |
+
annotations = [
|
1497 |
+
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
|
1498 |
+
for annotation, image in zip(annotations, images)
|
1499 |
+
]
|
1500 |
+
|
1501 |
+
if do_pad:
|
1502 |
+
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
|
1503 |
+
encoded_inputs = self.pad(
|
1504 |
+
images,
|
1505 |
+
annotations=annotations,
|
1506 |
+
return_pixel_mask=True,
|
1507 |
+
data_format=data_format,
|
1508 |
+
input_data_format=input_data_format,
|
1509 |
+
update_bboxes=do_convert_annotations,
|
1510 |
+
return_tensors=return_tensors,
|
1511 |
+
pad_size=pad_size,
|
1512 |
+
)
|
1513 |
+
else:
|
1514 |
+
images = [
|
1515 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
1516 |
+
for image in images
|
1517 |
+
]
|
1518 |
+
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
1519 |
+
if annotations is not None:
|
1520 |
+
encoded_inputs["labels"] = [
|
1521 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
|
1522 |
+
]
|
1523 |
+
|
1524 |
+
return encoded_inputs
|
1525 |
+
|
1526 |
+
# POSTPROCESSING METHODS - TODO: add support for other frameworks
|
1527 |
+
def post_process(self, outputs, target_sizes):
|
1528 |
+
"""
|
1529 |
+
Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
|
1530 |
+
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
|
1531 |
+
|
1532 |
+
Args:
|
1533 |
+
outputs ([`DeformableDetrObjectDetectionOutput`]):
|
1534 |
+
Raw outputs of the model.
|
1535 |
+
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
|
1536 |
+
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
|
1537 |
+
original image size (before any data augmentation). For visualization, this should be the image size
|
1538 |
+
after data augment, but before padding.
|
1539 |
+
Returns:
|
1540 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1541 |
+
in the batch as predicted by the model.
|
1542 |
+
"""
|
1543 |
+
logger.warning_once(
|
1544 |
+
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
|
1545 |
+
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
|
1546 |
+
)
|
1547 |
+
|
1548 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1549 |
+
|
1550 |
+
if len(out_logits) != len(target_sizes):
|
1551 |
+
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
|
1552 |
+
if target_sizes.shape[1] != 2:
|
1553 |
+
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
|
1554 |
+
|
1555 |
+
prob = out_logits.sigmoid()
|
1556 |
+
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
|
1557 |
+
scores = topk_values
|
1558 |
+
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
|
1559 |
+
labels = topk_indexes % out_logits.shape[2]
|
1560 |
+
boxes = center_to_corners_format(out_bbox)
|
1561 |
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
1562 |
+
|
1563 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
1564 |
+
img_h, img_w = target_sizes.unbind(1)
|
1565 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
1566 |
+
boxes = boxes * scale_fct[:, None, :]
|
1567 |
+
|
1568 |
+
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
|
1569 |
+
|
1570 |
+
return results
|
1571 |
+
|
1572 |
+
def post_process_object_detection(
|
1573 |
+
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
|
1574 |
+
):
|
1575 |
+
"""
|
1576 |
+
Converts the raw output of [`DiffusionDet`] into final bounding boxes in (top_left_x,
|
1577 |
+
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
|
1578 |
+
|
1579 |
+
Args:
|
1580 |
+
outputs ([`DetrObjectDetectionOutput`]):
|
1581 |
+
Raw outputs of the model.
|
1582 |
+
threshold (`float`, *optional*):
|
1583 |
+
Score threshold to keep object detection predictions.
|
1584 |
+
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
|
1585 |
+
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
|
1586 |
+
(height, width) of each image in the batch. If left to None, predictions will not be resized.
|
1587 |
+
top_k (`int`, *optional*, defaults to 100):
|
1588 |
+
Keep only top k bounding boxes before filtering by thresholding.
|
1589 |
+
|
1590 |
+
Returns:
|
1591 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1592 |
+
in the batch as predicted by the model.
|
1593 |
+
"""
|
1594 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1595 |
+
|
1596 |
+
if target_sizes is not None:
|
1597 |
+
if len(out_logits) != len(target_sizes):
|
1598 |
+
raise ValueError(
|
1599 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
1600 |
+
)
|
1601 |
+
|
1602 |
+
prob = out_logits.sigmoid()
|
1603 |
+
prob = prob.view(out_logits.shape[0], -1)
|
1604 |
+
k_value = min(top_k, prob.size(1))
|
1605 |
+
topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
|
1606 |
+
scores = topk_values
|
1607 |
+
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
|
1608 |
+
labels = topk_indexes % out_logits.shape[2]
|
1609 |
+
boxes = center_to_corners_format(out_bbox)
|
1610 |
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
1611 |
+
|
1612 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
1613 |
+
if target_sizes is not None:
|
1614 |
+
if isinstance(target_sizes, List):
|
1615 |
+
img_h = torch.Tensor([i[0] for i in target_sizes])
|
1616 |
+
img_w = torch.Tensor([i[1] for i in target_sizes])
|
1617 |
+
else:
|
1618 |
+
img_h, img_w = target_sizes.unbind(1)
|
1619 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
|
1620 |
+
boxes = boxes * scale_fct[:, None, :]
|
1621 |
+
|
1622 |
+
results = []
|
1623 |
+
for s, l, b in zip(scores, labels, boxes):
|
1624 |
+
score = s[s > threshold]
|
1625 |
+
label = l[s > threshold]
|
1626 |
+
box = b[s > threshold]
|
1627 |
+
results.append({"scores": score, "labels": label, "boxes": box})
|
1628 |
+
|
1629 |
+
return results
|
1630 |
+
|
1631 |
+
|
1632 |
+
__all__ = ["DiffusionDetImageProcessor"]
|
loss.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from fvcore.nn import sigmoid_focal_loss_jit
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
import torch.distributed as dist
|
7 |
+
from torch.distributed import get_world_size
|
8 |
+
from torchvision import ops
|
9 |
+
|
10 |
+
|
11 |
+
def is_dist_avail_and_initialized():
|
12 |
+
if not dist.is_available():
|
13 |
+
return False
|
14 |
+
if not dist.is_initialized():
|
15 |
+
return False
|
16 |
+
return True
|
17 |
+
|
18 |
+
|
19 |
+
def get_fed_loss_classes(gt_classes, num_fed_loss_classes, num_classes, weight):
|
20 |
+
"""
|
21 |
+
Args:
|
22 |
+
gt_classes: a long tensor of shape R that contains the gt class label of each proposal.
|
23 |
+
num_fed_loss_classes: minimum number of classes to keep when calculating federated loss.
|
24 |
+
Will sample negative classes if number of unique gt_classes is smaller than this value.
|
25 |
+
num_classes: number of foreground classes
|
26 |
+
weight: probabilities used to sample negative classes
|
27 |
+
Returns:
|
28 |
+
Tensor:
|
29 |
+
classes to keep when calculating the federated loss, including both unique gt
|
30 |
+
classes and sampled negative classes.
|
31 |
+
"""
|
32 |
+
unique_gt_classes = torch.unique(gt_classes)
|
33 |
+
prob = unique_gt_classes.new_ones(num_classes + 1).float()
|
34 |
+
prob[-1] = 0
|
35 |
+
if len(unique_gt_classes) < num_fed_loss_classes:
|
36 |
+
prob[:num_classes] = weight.float().clone()
|
37 |
+
prob[unique_gt_classes] = 0
|
38 |
+
sampled_negative_classes = torch.multinomial(
|
39 |
+
prob, num_fed_loss_classes - len(unique_gt_classes), replacement=False
|
40 |
+
)
|
41 |
+
fed_loss_classes = torch.cat([unique_gt_classes, sampled_negative_classes])
|
42 |
+
else:
|
43 |
+
fed_loss_classes = unique_gt_classes
|
44 |
+
return fed_loss_classes
|
45 |
+
|
46 |
+
|
47 |
+
class CriterionDynamicK(nn.Module):
|
48 |
+
""" This class computes the loss for DiffusionDet.
|
49 |
+
The process happens in two steps:
|
50 |
+
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
51 |
+
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, config, num_classes, weight_dict):
|
55 |
+
""" Create the criterion.
|
56 |
+
Parameters:
|
57 |
+
num_classes: number of object categories, omitting the special no-object category
|
58 |
+
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
59 |
+
"""
|
60 |
+
super().__init__()
|
61 |
+
self.config = config
|
62 |
+
self.num_classes = num_classes
|
63 |
+
self.matcher = HungarianMatcherDynamicK(config)
|
64 |
+
self.weight_dict = weight_dict
|
65 |
+
self.eos_coef = config.no_object_weight
|
66 |
+
self.use_focal = config.use_focal
|
67 |
+
self.use_fed_loss = config.use_fed_loss
|
68 |
+
|
69 |
+
if self.use_focal:
|
70 |
+
self.focal_loss_alpha = config.alpha
|
71 |
+
self.focal_loss_gamma = config.gamma
|
72 |
+
|
73 |
+
# copy-paste from https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/roi_heads/fast_rcnn.py#L356
|
74 |
+
def loss_labels(self, outputs, targets, indices):
|
75 |
+
"""Classification loss (NLL)
|
76 |
+
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
77 |
+
"""
|
78 |
+
assert 'pred_logits' in outputs
|
79 |
+
src_logits = outputs['pred_logits']
|
80 |
+
batch_size = len(targets)
|
81 |
+
|
82 |
+
# idx = self._get_src_permutation_idx(indices)
|
83 |
+
# target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
84 |
+
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
|
85 |
+
dtype=torch.int64, device=src_logits.device)
|
86 |
+
src_logits_list = []
|
87 |
+
target_classes_o_list = []
|
88 |
+
# target_classes[idx] = target_classes_o
|
89 |
+
for batch_idx in range(batch_size):
|
90 |
+
valid_query = indices[batch_idx][0]
|
91 |
+
gt_multi_idx = indices[batch_idx][1]
|
92 |
+
if len(gt_multi_idx) == 0:
|
93 |
+
continue
|
94 |
+
bz_src_logits = src_logits[batch_idx]
|
95 |
+
target_classes_o = targets[batch_idx]["labels"]
|
96 |
+
target_classes[batch_idx, valid_query] = target_classes_o[gt_multi_idx]
|
97 |
+
|
98 |
+
src_logits_list.append(bz_src_logits[valid_query])
|
99 |
+
target_classes_o_list.append(target_classes_o[gt_multi_idx])
|
100 |
+
|
101 |
+
if self.use_focal or self.use_fed_loss:
|
102 |
+
num_boxes = torch.cat(target_classes_o_list).shape[0] if len(target_classes_o_list) != 0 else 1
|
103 |
+
|
104 |
+
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], self.num_classes + 1],
|
105 |
+
dtype=src_logits.dtype, layout=src_logits.layout,
|
106 |
+
device=src_logits.device)
|
107 |
+
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
|
108 |
+
|
109 |
+
gt_classes = torch.argmax(target_classes_onehot, dim=-1)
|
110 |
+
target_classes_onehot = target_classes_onehot[:, :, :-1]
|
111 |
+
|
112 |
+
src_logits = src_logits.flatten(0, 1)
|
113 |
+
target_classes_onehot = target_classes_onehot.flatten(0, 1)
|
114 |
+
if self.use_focal:
|
115 |
+
cls_loss = sigmoid_focal_loss_jit(src_logits, target_classes_onehot, alpha=self.focal_loss_alpha,
|
116 |
+
gamma=self.focal_loss_gamma, reduction="none")
|
117 |
+
else:
|
118 |
+
cls_loss = F.binary_cross_entropy_with_logits(src_logits, target_classes_onehot, reduction="none")
|
119 |
+
if self.use_fed_loss:
|
120 |
+
K = self.num_classes
|
121 |
+
N = src_logits.shape[0]
|
122 |
+
fed_loss_classes = get_fed_loss_classes(
|
123 |
+
gt_classes,
|
124 |
+
num_fed_loss_classes=self.fed_loss_num_classes,
|
125 |
+
num_classes=K,
|
126 |
+
weight=self.fed_loss_cls_weights,
|
127 |
+
)
|
128 |
+
fed_loss_classes_mask = fed_loss_classes.new_zeros(K + 1)
|
129 |
+
fed_loss_classes_mask[fed_loss_classes] = 1
|
130 |
+
fed_loss_classes_mask = fed_loss_classes_mask[:K]
|
131 |
+
weight = fed_loss_classes_mask.view(1, K).expand(N, K).float()
|
132 |
+
|
133 |
+
loss_ce = torch.sum(cls_loss * weight) / num_boxes
|
134 |
+
else:
|
135 |
+
loss_ce = torch.sum(cls_loss) / num_boxes
|
136 |
+
|
137 |
+
losses = {'loss_ce': loss_ce}
|
138 |
+
else:
|
139 |
+
raise NotImplementedError
|
140 |
+
|
141 |
+
return losses
|
142 |
+
|
143 |
+
def loss_boxes(self, outputs, targets, indices):
|
144 |
+
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
|
145 |
+
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
|
146 |
+
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
|
147 |
+
"""
|
148 |
+
assert 'pred_boxes' in outputs
|
149 |
+
# idx = self._get_src_permutation_idx(indices)
|
150 |
+
src_boxes = outputs['pred_boxes']
|
151 |
+
|
152 |
+
batch_size = len(targets)
|
153 |
+
pred_box_list = []
|
154 |
+
pred_norm_box_list = []
|
155 |
+
tgt_box_list = []
|
156 |
+
tgt_box_xyxy_list = []
|
157 |
+
for batch_idx in range(batch_size):
|
158 |
+
valid_query = indices[batch_idx][0]
|
159 |
+
gt_multi_idx = indices[batch_idx][1]
|
160 |
+
if len(gt_multi_idx) == 0:
|
161 |
+
continue
|
162 |
+
bz_image_whwh = targets[batch_idx]['image_size_xyxy']
|
163 |
+
bz_src_boxes = src_boxes[batch_idx]
|
164 |
+
bz_target_boxes = targets[batch_idx]["boxes"] # normalized (cx, cy, w, h)
|
165 |
+
bz_target_boxes_xyxy = targets[batch_idx]["boxes_xyxy"] # absolute (x1, y1, x2, y2)
|
166 |
+
pred_box_list.append(bz_src_boxes[valid_query])
|
167 |
+
pred_norm_box_list.append(bz_src_boxes[valid_query] / bz_image_whwh) # normalize (x1, y1, x2, y2)
|
168 |
+
tgt_box_list.append(bz_target_boxes[gt_multi_idx])
|
169 |
+
tgt_box_xyxy_list.append(bz_target_boxes_xyxy[gt_multi_idx])
|
170 |
+
|
171 |
+
if len(pred_box_list) != 0:
|
172 |
+
src_boxes = torch.cat(pred_box_list)
|
173 |
+
src_boxes_norm = torch.cat(pred_norm_box_list) # normalized (x1, y1, x2, y2)
|
174 |
+
target_boxes = torch.cat(tgt_box_list)
|
175 |
+
target_boxes_abs_xyxy = torch.cat(tgt_box_xyxy_list)
|
176 |
+
num_boxes = src_boxes.shape[0]
|
177 |
+
|
178 |
+
losses = {}
|
179 |
+
# require normalized (x1, y1, x2, y2)
|
180 |
+
loss_bbox = F.l1_loss(src_boxes_norm, ops.box_convert(target_boxes, 'cxcywh', 'xyxy'), reduction='none')
|
181 |
+
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
|
182 |
+
|
183 |
+
# loss_giou = giou_loss(box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))
|
184 |
+
loss_giou = 1 - torch.diag(ops.generalized_box_iou(src_boxes, target_boxes_abs_xyxy))
|
185 |
+
losses['loss_giou'] = loss_giou.sum() / num_boxes
|
186 |
+
else:
|
187 |
+
losses = {'loss_bbox': outputs['pred_boxes'].sum() * 0,
|
188 |
+
'loss_giou': outputs['pred_boxes'].sum() * 0}
|
189 |
+
|
190 |
+
return losses
|
191 |
+
|
192 |
+
def get_loss(self, loss, outputs, targets, indices):
|
193 |
+
loss_map = {
|
194 |
+
'labels': self.loss_labels,
|
195 |
+
'boxes': self.loss_boxes,
|
196 |
+
}
|
197 |
+
assert loss in loss_map, f'do you really want to compute {loss} loss?'
|
198 |
+
return loss_map[loss](outputs, targets, indices)
|
199 |
+
|
200 |
+
def forward(self, outputs, targets):
|
201 |
+
""" This performs the loss computation.
|
202 |
+
Parameters:
|
203 |
+
outputs: dict of tensors, see the output specification of the model for the format
|
204 |
+
targets: list of dicts, such that len(targets) == batch_size.
|
205 |
+
The expected keys in each dict depends on the losses applied, see each loss' doc
|
206 |
+
"""
|
207 |
+
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
|
208 |
+
|
209 |
+
# Retrieve the matching between the outputs of the last layer and the targets
|
210 |
+
indices, _ = self.matcher(outputs_without_aux, targets)
|
211 |
+
|
212 |
+
# Compute all the requested losses
|
213 |
+
losses = {}
|
214 |
+
for loss in ["labels", "boxes"]:
|
215 |
+
losses.update(self.get_loss(loss, outputs, targets, indices))
|
216 |
+
|
217 |
+
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
218 |
+
if 'aux_outputs' in outputs:
|
219 |
+
for i, aux_outputs in enumerate(outputs['aux_outputs']):
|
220 |
+
indices, _ = self.matcher(aux_outputs, targets)
|
221 |
+
for loss in ["labels", "boxes"]:
|
222 |
+
if loss == 'masks':
|
223 |
+
# Intermediate masks losses are too costly to compute, we ignore them.
|
224 |
+
continue
|
225 |
+
|
226 |
+
l_dict = self.get_loss(loss, aux_outputs, targets, indices)
|
227 |
+
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
|
228 |
+
losses.update(l_dict)
|
229 |
+
|
230 |
+
return losses
|
231 |
+
|
232 |
+
|
233 |
+
def get_in_boxes_info(boxes, target_gts):
|
234 |
+
xy_target_gts = ops.box_convert(target_gts, 'cxcywh', 'xyxy') # (x1, y1, x2, y2)
|
235 |
+
|
236 |
+
anchor_center_x = boxes[:, 0].unsqueeze(1)
|
237 |
+
anchor_center_y = boxes[:, 1].unsqueeze(1)
|
238 |
+
|
239 |
+
# whether the center of each anchor is inside a gt box
|
240 |
+
b_l = anchor_center_x > xy_target_gts[:, 0].unsqueeze(0)
|
241 |
+
b_r = anchor_center_x < xy_target_gts[:, 2].unsqueeze(0)
|
242 |
+
b_t = anchor_center_y > xy_target_gts[:, 1].unsqueeze(0)
|
243 |
+
b_b = anchor_center_y < xy_target_gts[:, 3].unsqueeze(0)
|
244 |
+
# (b_l.long()+b_r.long()+b_t.long()+b_b.long())==4 [300,num_gt] ,
|
245 |
+
is_in_boxes = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
|
246 |
+
is_in_boxes_all = is_in_boxes.sum(1) > 0 # [num_query]
|
247 |
+
# in fixed center
|
248 |
+
center_radius = 2.5
|
249 |
+
# Modified to self-adapted sampling --- the center size depends on the size of the gt boxes
|
250 |
+
# https://github.com/dulucas/UVO_Challenge/blob/main/Track1/detection/mmdet/core/bbox/assigners/rpn_sim_ota_assigner.py#L212
|
251 |
+
b_l = anchor_center_x > (
|
252 |
+
target_gts[:, 0] - (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
|
253 |
+
b_r = anchor_center_x < (
|
254 |
+
target_gts[:, 0] + (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
|
255 |
+
b_t = anchor_center_y > (
|
256 |
+
target_gts[:, 1] - (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
|
257 |
+
b_b = anchor_center_y < (
|
258 |
+
target_gts[:, 1] + (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
|
259 |
+
|
260 |
+
is_in_centers = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
|
261 |
+
is_in_centers_all = is_in_centers.sum(1) > 0
|
262 |
+
|
263 |
+
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
|
264 |
+
is_in_boxes_and_center = (is_in_boxes & is_in_centers)
|
265 |
+
|
266 |
+
return is_in_boxes_anchor, is_in_boxes_and_center
|
267 |
+
|
268 |
+
|
269 |
+
class HungarianMatcherDynamicK(nn.Module):
|
270 |
+
"""This class computes an assignment between the targets and the predictions of the network
|
271 |
+
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
272 |
+
there are more predictions than targets. In this case, we do a 1-to-k (dynamic) matching of the best predictions,
|
273 |
+
while the others are un-matched (and thus treated as non-objects).
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(self, config):
|
277 |
+
super().__init__()
|
278 |
+
self.use_focal = config.use_focal
|
279 |
+
self.use_fed_loss = config.use_fed_loss
|
280 |
+
self.cost_class = config.class_weight
|
281 |
+
self.cost_giou = config.giou_weight
|
282 |
+
self.cost_bbox = config.l1_weight
|
283 |
+
self.ota_k = config.ota_k
|
284 |
+
|
285 |
+
if self.use_focal:
|
286 |
+
self.focal_loss_alpha = config.alpha
|
287 |
+
self.focal_loss_gamma = config.gamma
|
288 |
+
|
289 |
+
assert self.cost_class != 0 or self.cost_bbox != 0 or self.cost_giou != 0, "all costs cant be 0"
|
290 |
+
|
291 |
+
def forward(self, outputs, targets):
|
292 |
+
""" simOTA for detr"""
|
293 |
+
with torch.no_grad():
|
294 |
+
bs, num_queries = outputs["pred_logits"].shape[:2]
|
295 |
+
# We flatten to compute the cost matrices in a batch
|
296 |
+
if self.use_focal or self.use_fed_loss:
|
297 |
+
out_prob = outputs["pred_logits"].sigmoid() # [batch_size, num_queries, num_classes]
|
298 |
+
out_bbox = outputs["pred_boxes"] # [batch_size, num_queries, 4]
|
299 |
+
else:
|
300 |
+
out_prob = outputs["pred_logits"].softmax(-1) # [batch_size, num_queries, num_classes]
|
301 |
+
out_bbox = outputs["pred_boxes"] # [batch_size, num_queries, 4]
|
302 |
+
|
303 |
+
indices = []
|
304 |
+
matched_ids = []
|
305 |
+
assert bs == len(targets)
|
306 |
+
for batch_idx in range(bs):
|
307 |
+
bz_boxes = out_bbox[batch_idx] # [num_proposals, 4]
|
308 |
+
bz_out_prob = out_prob[batch_idx]
|
309 |
+
bz_tgt_ids = targets[batch_idx]["labels"]
|
310 |
+
num_insts = len(bz_tgt_ids)
|
311 |
+
if num_insts == 0: # empty object in key frame
|
312 |
+
non_valid = torch.zeros(bz_out_prob.shape[0]).to(bz_out_prob) > 0
|
313 |
+
indices_batchi = (non_valid, torch.arange(0, 0).to(bz_out_prob))
|
314 |
+
matched_qidx = torch.arange(0, 0).to(bz_out_prob)
|
315 |
+
indices.append(indices_batchi)
|
316 |
+
matched_ids.append(matched_qidx)
|
317 |
+
continue
|
318 |
+
|
319 |
+
bz_gtboxs = targets[batch_idx]['boxes'] # [num_gt, 4] normalized (cx, xy, w, h)
|
320 |
+
bz_gtboxs_abs_xyxy = targets[batch_idx]['boxes_xyxy']
|
321 |
+
fg_mask, is_in_boxes_and_center = get_in_boxes_info(
|
322 |
+
ops.box_convert(bz_boxes, 'xyxy', 'cxcywh'), # absolute (cx, cy, w, h)
|
323 |
+
ops.box_convert(bz_gtboxs_abs_xyxy, 'xyxy', 'cxcywh') # absolute (cx, cy, w, h)
|
324 |
+
)
|
325 |
+
|
326 |
+
pair_wise_ious = ops.box_iou(bz_boxes, bz_gtboxs_abs_xyxy)
|
327 |
+
|
328 |
+
# Compute the classification cost.
|
329 |
+
if self.use_focal:
|
330 |
+
alpha = self.focal_loss_alpha
|
331 |
+
gamma = self.focal_loss_gamma
|
332 |
+
neg_cost_class = (1 - alpha) * (bz_out_prob ** gamma) * (-(1 - bz_out_prob + 1e-8).log())
|
333 |
+
pos_cost_class = alpha * ((1 - bz_out_prob) ** gamma) * (-(bz_out_prob + 1e-8).log())
|
334 |
+
cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
|
335 |
+
elif self.use_fed_loss:
|
336 |
+
# focal loss degenerates to naive one
|
337 |
+
neg_cost_class = (-(1 - bz_out_prob + 1e-8).log())
|
338 |
+
pos_cost_class = (-(bz_out_prob + 1e-8).log())
|
339 |
+
cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
|
340 |
+
else:
|
341 |
+
cost_class = -bz_out_prob[:, bz_tgt_ids]
|
342 |
+
|
343 |
+
# Compute the L1 cost between boxes
|
344 |
+
# image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets])
|
345 |
+
# image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1)
|
346 |
+
# image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets])
|
347 |
+
|
348 |
+
bz_image_size_out = targets[batch_idx]['image_size_xyxy']
|
349 |
+
bz_image_size_tgt = targets[batch_idx]['image_size_xyxy_tgt']
|
350 |
+
|
351 |
+
bz_out_bbox_ = bz_boxes / bz_image_size_out # normalize (x1, y1, x2, y2)
|
352 |
+
bz_tgt_bbox_ = bz_gtboxs_abs_xyxy / bz_image_size_tgt # normalize (x1, y1, x2, y2)
|
353 |
+
cost_bbox = torch.cdist(bz_out_bbox_, bz_tgt_bbox_, p=1)
|
354 |
+
|
355 |
+
cost_giou = -ops.generalized_box_iou(bz_boxes, bz_gtboxs_abs_xyxy)
|
356 |
+
|
357 |
+
# Final cost matrix
|
358 |
+
cost = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou + 100.0 * (
|
359 |
+
~is_in_boxes_and_center)
|
360 |
+
# cost = (cost_class + 3.0 * cost_giou + 100.0 * (~is_in_boxes_and_center)) # [num_query,num_gt]
|
361 |
+
cost[~fg_mask] = cost[~fg_mask] + 10000.0
|
362 |
+
|
363 |
+
# if bz_gtboxs.shape[0]>0:
|
364 |
+
indices_batchi, matched_qidx = self.dynamic_k_matching(cost, pair_wise_ious, bz_gtboxs.shape[0])
|
365 |
+
|
366 |
+
indices.append(indices_batchi)
|
367 |
+
matched_ids.append(matched_qidx)
|
368 |
+
|
369 |
+
return indices, matched_ids
|
370 |
+
|
371 |
+
def dynamic_k_matching(self, cost, pair_wise_ious, num_gt):
|
372 |
+
matching_matrix = torch.zeros_like(cost) # [300,num_gt]
|
373 |
+
ious_in_boxes_matrix = pair_wise_ious
|
374 |
+
n_candidate_k = self.ota_k
|
375 |
+
|
376 |
+
# Take the sum of the predicted value and the top 10 iou of gt with the largest iou as dynamic_k
|
377 |
+
topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=0)
|
378 |
+
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
|
379 |
+
|
380 |
+
for gt_idx in range(num_gt):
|
381 |
+
_, pos_idx = torch.topk(cost[:, gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)
|
382 |
+
matching_matrix[:, gt_idx][pos_idx] = 1.0
|
383 |
+
|
384 |
+
del topk_ious, dynamic_ks, pos_idx
|
385 |
+
|
386 |
+
anchor_matching_gt = matching_matrix.sum(1)
|
387 |
+
|
388 |
+
if (anchor_matching_gt > 1).sum() > 0:
|
389 |
+
_, cost_argmin = torch.min(cost[anchor_matching_gt > 1], dim=1)
|
390 |
+
matching_matrix[anchor_matching_gt > 1] *= 0
|
391 |
+
matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1
|
392 |
+
|
393 |
+
while (matching_matrix.sum(0) == 0).any():
|
394 |
+
num_zero_gt = (matching_matrix.sum(0) == 0).sum()
|
395 |
+
matched_query_id = matching_matrix.sum(1) > 0
|
396 |
+
cost[matched_query_id] += 100000.0
|
397 |
+
unmatch_id = torch.nonzero(matching_matrix.sum(0) == 0, as_tuple=False).squeeze(1)
|
398 |
+
for gt_idx in unmatch_id:
|
399 |
+
pos_idx = torch.argmin(cost[:, gt_idx])
|
400 |
+
matching_matrix[:, gt_idx][pos_idx] = 1.0
|
401 |
+
if (matching_matrix.sum(1) > 1).sum() > 0: # If a query matches more than one gt
|
402 |
+
_, cost_argmin = torch.min(cost[anchor_matching_gt > 1],
|
403 |
+
dim=1) # find gt for these queries with minimal cost
|
404 |
+
matching_matrix[anchor_matching_gt > 1] *= 0 # reset mapping relationship
|
405 |
+
matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1 # keep gt with minimal cost
|
406 |
+
|
407 |
+
assert not (matching_matrix.sum(0) == 0).any()
|
408 |
+
selected_query = matching_matrix.sum(1) > 0
|
409 |
+
gt_indices = matching_matrix[selected_query].max(1)[1]
|
410 |
+
assert selected_query.sum() == len(gt_indices)
|
411 |
+
|
412 |
+
cost[matching_matrix == 0] = cost[matching_matrix == 0] + float('inf')
|
413 |
+
matched_query_id = torch.min(cost, dim=0)[1]
|
414 |
+
|
415 |
+
return (selected_query, gt_indices), matched_query_id
|
modeling_diffusiondet.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
from collections import namedtuple, OrderedDict
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Dict, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torchvision import ops
|
11 |
+
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
|
12 |
+
from transformers import PreTrainedModel
|
13 |
+
import wandb
|
14 |
+
|
15 |
+
from transformers.utils.backbone_utils import load_backbone
|
16 |
+
from .configuration_diffusiondet import DiffusionDetConfig
|
17 |
+
|
18 |
+
from .head import HeadDynamicK
|
19 |
+
from .loss import CriterionDynamicK
|
20 |
+
|
21 |
+
from transformers.utils import ModelOutput
|
22 |
+
|
23 |
+
ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
|
24 |
+
|
25 |
+
|
26 |
+
def default(val, d):
|
27 |
+
if val is not None:
|
28 |
+
return val
|
29 |
+
return d() if callable(d) else d
|
30 |
+
|
31 |
+
|
32 |
+
def extract(a, t, x_shape):
|
33 |
+
"""extract the appropriate t index for a batch of indices"""
|
34 |
+
batch_size = t.shape[0]
|
35 |
+
out = a.gather(-1, t)
|
36 |
+
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1)))
|
37 |
+
|
38 |
+
|
39 |
+
def cosine_beta_schedule(timesteps, s=0.008):
|
40 |
+
"""
|
41 |
+
cosine schedule
|
42 |
+
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
43 |
+
"""
|
44 |
+
steps = timesteps + 1
|
45 |
+
x = torch.linspace(0, timesteps, steps)
|
46 |
+
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
|
47 |
+
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
48 |
+
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
49 |
+
return torch.clip(betas, 0, 0.999)
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class DiffusionDetOutput(ModelOutput):
|
53 |
+
"""
|
54 |
+
Output type of DiffusionDet.
|
55 |
+
"""
|
56 |
+
|
57 |
+
loss: Optional[torch.FloatTensor] = None
|
58 |
+
loss_dict: Optional[Dict] = None
|
59 |
+
logits: torch.FloatTensor = None
|
60 |
+
labels: torch.IntTensor = None
|
61 |
+
pred_boxes: torch.FloatTensor = None
|
62 |
+
|
63 |
+
class DiffusionDet(PreTrainedModel):
|
64 |
+
"""
|
65 |
+
Implement DiffusionDet
|
66 |
+
"""
|
67 |
+
config_class = DiffusionDetConfig
|
68 |
+
main_input_name = "pixel_values"
|
69 |
+
|
70 |
+
def __init__(self, config):
|
71 |
+
super(DiffusionDet, self).__init__(config)
|
72 |
+
|
73 |
+
self.in_features = config.roi_head_in_features
|
74 |
+
self.num_classes = config.num_labels
|
75 |
+
self.num_proposals = config.num_proposals
|
76 |
+
self.num_heads = config.num_heads
|
77 |
+
|
78 |
+
self.backbone = load_backbone(config)
|
79 |
+
self.fpn = FeaturePyramidNetwork(
|
80 |
+
in_channels_list=self.backbone.channels,
|
81 |
+
out_channels=config.fpn_out_channels,
|
82 |
+
# extra_blocks=LastLevelMaxPool(),
|
83 |
+
)
|
84 |
+
|
85 |
+
# build diffusion
|
86 |
+
betas = cosine_beta_schedule(1000)
|
87 |
+
alphas_cumprod = torch.cumprod(1 - betas, dim=0)
|
88 |
+
|
89 |
+
timesteps, = betas.shape
|
90 |
+
sampling_timesteps = config.sample_step
|
91 |
+
|
92 |
+
self.register_buffer('alphas_cumprod', alphas_cumprod)
|
93 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
|
94 |
+
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
|
95 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
|
96 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
|
97 |
+
|
98 |
+
self.num_timesteps = int(timesteps)
|
99 |
+
self.sampling_timesteps = default(sampling_timesteps, timesteps)
|
100 |
+
self.ddim_sampling_eta = 1.
|
101 |
+
self.scale = config.snr_scale
|
102 |
+
assert self.sampling_timesteps <= timesteps
|
103 |
+
|
104 |
+
roi_input_shape = {
|
105 |
+
'p2': {'stride': 4},
|
106 |
+
'p3': {'stride': 8},
|
107 |
+
'p4': {'stride': 16},
|
108 |
+
'p5': {'stride': 32},
|
109 |
+
'p6': {'stride': 64}
|
110 |
+
}
|
111 |
+
self.head = HeadDynamicK(config, roi_input_shape=roi_input_shape)
|
112 |
+
|
113 |
+
self.deep_supervision = config.deep_supervision
|
114 |
+
self.use_focal = config.use_focal
|
115 |
+
self.use_fed_loss = config.use_fed_loss
|
116 |
+
self.use_nms = config.use_nms
|
117 |
+
|
118 |
+
weight_dict = {
|
119 |
+
"loss_ce": config.class_weight, "loss_bbox": config.l1_weight, "loss_giou": config.giou_weight
|
120 |
+
}
|
121 |
+
if self.deep_supervision:
|
122 |
+
aux_weight_dict = {}
|
123 |
+
for i in range(self.num_heads - 1):
|
124 |
+
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
125 |
+
weight_dict.update(aux_weight_dict)
|
126 |
+
|
127 |
+
self.criterion = CriterionDynamicK(config, num_classes=self.num_classes, weight_dict=weight_dict)
|
128 |
+
|
129 |
+
def predict_noise_from_start(self, x_t, t, x0):
|
130 |
+
return (
|
131 |
+
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) /
|
132 |
+
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
133 |
+
)
|
134 |
+
|
135 |
+
def model_predictions(self, backbone_feats, images_whwh, x, t):
|
136 |
+
x_boxes = torch.clamp(x, min=-1 * self.scale, max=self.scale)
|
137 |
+
x_boxes = ((x_boxes / self.scale) + 1) / 2
|
138 |
+
x_boxes = ops.box_convert(x_boxes, 'cxcywh', 'xyxy')
|
139 |
+
x_boxes = x_boxes * images_whwh[:, None, :]
|
140 |
+
outputs_class, outputs_coord = self.head(backbone_feats, x_boxes, t)
|
141 |
+
|
142 |
+
x_start = outputs_coord[-1] # (batch, num_proposals, 4) predict boxes: absolute coordinates (x1, y1, x2, y2)
|
143 |
+
x_start = x_start / images_whwh[:, None, :]
|
144 |
+
x_start = ops.box_convert(x_start, 'xyxy', 'cxcywh')
|
145 |
+
x_start = (x_start * 2 - 1.) * self.scale
|
146 |
+
x_start = torch.clamp(x_start, min=-1 * self.scale, max=self.scale)
|
147 |
+
pred_noise = self.predict_noise_from_start(x, t, x_start)
|
148 |
+
|
149 |
+
return ModelPrediction(pred_noise, x_start), outputs_class, outputs_coord
|
150 |
+
|
151 |
+
@torch.no_grad()
|
152 |
+
def ddim_sample(self, batched_inputs, backbone_feats, images_whwh):
|
153 |
+
bs = len(batched_inputs)
|
154 |
+
image_sizes = batched_inputs.shape
|
155 |
+
shape = (bs, self.num_proposals, 4)
|
156 |
+
|
157 |
+
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
|
158 |
+
times = torch.linspace(-1, self.num_timesteps - 1, steps=self.sampling_timesteps + 1)
|
159 |
+
times = list(reversed(times.int().tolist()))
|
160 |
+
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
|
161 |
+
|
162 |
+
img = torch.randn(shape, device=self.device)
|
163 |
+
|
164 |
+
ensemble_score, ensemble_label, ensemble_coord = [], [], []
|
165 |
+
outputs_class, outputs_coord = None, None
|
166 |
+
for time, time_next in time_pairs:
|
167 |
+
time_cond = torch.full((bs,), time, device=self.device, dtype=torch.long)
|
168 |
+
|
169 |
+
preds, outputs_class, outputs_coord = self.model_predictions(backbone_feats, images_whwh, img, time_cond)
|
170 |
+
pred_noise, x_start = preds.pred_noise, preds.pred_x_start
|
171 |
+
|
172 |
+
score_per_image, box_per_image = outputs_class[-1][0], outputs_coord[-1][0]
|
173 |
+
threshold = 0.5
|
174 |
+
score_per_image = torch.sigmoid(score_per_image)
|
175 |
+
value, _ = torch.max(score_per_image, -1, keepdim=False)
|
176 |
+
keep_idx = value > threshold
|
177 |
+
num_remain = torch.sum(keep_idx)
|
178 |
+
|
179 |
+
pred_noise = pred_noise[:, keep_idx, :]
|
180 |
+
x_start = x_start[:, keep_idx, :]
|
181 |
+
img = img[:, keep_idx, :]
|
182 |
+
|
183 |
+
if time_next < 0:
|
184 |
+
img = x_start
|
185 |
+
continue
|
186 |
+
|
187 |
+
alpha = self.alphas_cumprod[time]
|
188 |
+
alpha_next = self.alphas_cumprod[time_next]
|
189 |
+
|
190 |
+
sigma = self.ddim_sampling_eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
191 |
+
c = (1 - alpha_next - sigma ** 2).sqrt()
|
192 |
+
|
193 |
+
noise = torch.randn_like(img)
|
194 |
+
|
195 |
+
img = x_start * alpha_next.sqrt() + \
|
196 |
+
c * pred_noise + \
|
197 |
+
sigma * noise
|
198 |
+
|
199 |
+
img = torch.cat((img, torch.randn(1, self.num_proposals - num_remain, 4, device=img.device)), dim=1)
|
200 |
+
|
201 |
+
if self.sampling_timesteps > 1:
|
202 |
+
box_pred_per_image, scores_per_image, labels_per_image = self.inference(outputs_class[-1],
|
203 |
+
outputs_coord[-1])
|
204 |
+
ensemble_score.append(scores_per_image)
|
205 |
+
ensemble_label.append(labels_per_image)
|
206 |
+
ensemble_coord.append(box_pred_per_image)
|
207 |
+
|
208 |
+
if self.sampling_timesteps > 1:
|
209 |
+
box_pred_per_image = torch.cat(ensemble_coord, dim=0)
|
210 |
+
scores_per_image = torch.cat(ensemble_score, dim=0)
|
211 |
+
labels_per_image = torch.cat(ensemble_label, dim=0)
|
212 |
+
|
213 |
+
if self.use_nms:
|
214 |
+
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
|
215 |
+
box_pred_per_image = box_pred_per_image[keep]
|
216 |
+
scores_per_image = scores_per_image[keep]
|
217 |
+
labels_per_image = labels_per_image[keep]
|
218 |
+
|
219 |
+
return box_pred_per_image, scores_per_image, labels_per_image
|
220 |
+
else:
|
221 |
+
return self.inference(outputs_class[-1], outputs_coord[-1])
|
222 |
+
|
223 |
+
def q_sample(self, x_start, t, noise=None):
|
224 |
+
if noise is None:
|
225 |
+
noise = torch.randn_like(x_start)
|
226 |
+
|
227 |
+
sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, t, x_start.shape)
|
228 |
+
sqrt_one_minus_alphas_cumprod_t = extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
229 |
+
|
230 |
+
return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise
|
231 |
+
|
232 |
+
def forward(self, pixel_values, labels):
|
233 |
+
"""
|
234 |
+
Args:
|
235 |
+
"""
|
236 |
+
images = pixel_values.to(self.device)
|
237 |
+
images_whwh = list()
|
238 |
+
for image in images:
|
239 |
+
h, w = image.shape[-2:]
|
240 |
+
images_whwh.append(torch.tensor([w, h, w, h], device=self.device))
|
241 |
+
images_whwh = torch.stack(images_whwh)
|
242 |
+
|
243 |
+
features = self.backbone(images)
|
244 |
+
features = OrderedDict(
|
245 |
+
[(key, feature) for key, feature in zip(self.backbone.out_features, features.feature_maps)]
|
246 |
+
)
|
247 |
+
features = self.fpn(features) # [144, 72, 36, 18]
|
248 |
+
features = [features[f] for f in features.keys()]
|
249 |
+
|
250 |
+
# if self.training:
|
251 |
+
labels = list(map(lambda tensor: tensor.to(self.device), labels))
|
252 |
+
targets, x_boxes, noises, ts = self.prepare_targets(labels)
|
253 |
+
|
254 |
+
ts = ts.squeeze(-1)
|
255 |
+
x_boxes = x_boxes * images_whwh[:, None, :]
|
256 |
+
|
257 |
+
outputs_class, outputs_coord = self.head(features, x_boxes, ts)
|
258 |
+
output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
|
259 |
+
|
260 |
+
if self.deep_supervision:
|
261 |
+
output['aux_outputs'] = [{'pred_logits': a, 'pred_boxes': b}
|
262 |
+
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
263 |
+
|
264 |
+
loss_dict = self.criterion(output, targets)
|
265 |
+
weight_dict = self.criterion.weight_dict
|
266 |
+
for k in loss_dict.keys():
|
267 |
+
if k in weight_dict:
|
268 |
+
loss_dict[k] *= weight_dict[k]
|
269 |
+
loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
|
270 |
+
|
271 |
+
wandb_logs_values = ["loss_ce", "loss_bbox", "loss_giou"]
|
272 |
+
|
273 |
+
if self.training:
|
274 |
+
wandb.log({f'train/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
|
275 |
+
else:
|
276 |
+
wandb.log({f'eval/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
|
277 |
+
|
278 |
+
if not self.training:
|
279 |
+
pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
|
280 |
+
return DiffusionDetOutput(
|
281 |
+
loss=loss_dict['loss'],
|
282 |
+
loss_dict=loss_dict,
|
283 |
+
logits=pred_logits,
|
284 |
+
labels=pred_labels,
|
285 |
+
pred_boxes=pred_boxes,
|
286 |
+
)
|
287 |
+
|
288 |
+
return DiffusionDetOutput(
|
289 |
+
loss=loss_dict['loss'],
|
290 |
+
loss_dict=loss_dict,
|
291 |
+
logits=output['pred_logits'],
|
292 |
+
pred_boxes=output['pred_boxes']
|
293 |
+
)
|
294 |
+
|
295 |
+
def prepare_diffusion_concat(self, gt_boxes):
|
296 |
+
"""
|
297 |
+
:param gt_boxes: (cx, cy, w, h), normalized
|
298 |
+
:param num_proposals:
|
299 |
+
"""
|
300 |
+
t = torch.randint(0, self.num_timesteps, (1,), device=self.device).long()
|
301 |
+
noise = torch.randn(self.num_proposals, 4, device=self.device)
|
302 |
+
|
303 |
+
num_gt = gt_boxes.shape[0]
|
304 |
+
if not num_gt: # generate fake gt boxes if empty gt boxes
|
305 |
+
gt_boxes = torch.as_tensor([[0.5, 0.5, 1., 1.]], dtype=torch.float, device=self.device)
|
306 |
+
num_gt = 1
|
307 |
+
|
308 |
+
if num_gt < self.num_proposals:
|
309 |
+
box_placeholder = torch.randn(self.num_proposals - num_gt, 4,
|
310 |
+
device=self.device) / 6. + 0.5 # 3sigma = 1/2 --> sigma: 1/6
|
311 |
+
box_placeholder[:, 2:] = torch.clip(box_placeholder[:, 2:], min=1e-4)
|
312 |
+
x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
|
313 |
+
elif num_gt > self.num_proposals:
|
314 |
+
select_mask = [True] * self.num_proposals + [False] * (num_gt - self.num_proposals)
|
315 |
+
random.shuffle(select_mask)
|
316 |
+
x_start = gt_boxes[select_mask]
|
317 |
+
else:
|
318 |
+
x_start = gt_boxes
|
319 |
+
|
320 |
+
x_start = (x_start * 2. - 1.) * self.scale
|
321 |
+
|
322 |
+
# noise sample
|
323 |
+
x = self.q_sample(x_start=x_start, t=t, noise=noise)
|
324 |
+
|
325 |
+
x = torch.clamp(x, min=-1 * self.scale, max=self.scale)
|
326 |
+
x = ((x / self.scale) + 1) / 2.
|
327 |
+
|
328 |
+
diff_boxes = ops.box_convert(x, 'cxcywh', 'xyxy')
|
329 |
+
|
330 |
+
return diff_boxes, noise, t
|
331 |
+
|
332 |
+
def prepare_targets(self, targets):
|
333 |
+
new_targets = []
|
334 |
+
diffused_boxes = []
|
335 |
+
noises = []
|
336 |
+
ts = []
|
337 |
+
for target in targets:
|
338 |
+
h, w = target.size
|
339 |
+
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
|
340 |
+
gt_classes = target.class_labels.to(self.device)
|
341 |
+
gt_boxes = target.boxes.to(self.device)
|
342 |
+
d_boxes, d_noise, d_t = self.prepare_diffusion_concat(gt_boxes)
|
343 |
+
image_size_xyxy_tgt = image_size_xyxy.unsqueeze(0).repeat(len(gt_boxes), 1)
|
344 |
+
gt_boxes = gt_boxes * image_size_xyxy
|
345 |
+
gt_boxes = ops.box_convert(gt_boxes, 'cxcywh', 'xyxy')
|
346 |
+
|
347 |
+
diffused_boxes.append(d_boxes)
|
348 |
+
noises.append(d_noise)
|
349 |
+
ts.append(d_t)
|
350 |
+
new_targets.append({
|
351 |
+
"labels": gt_classes,
|
352 |
+
"boxes": target.boxes.to(self.device),
|
353 |
+
"boxes_xyxy": gt_boxes,
|
354 |
+
"image_size_xyxy": image_size_xyxy.to(self.device),
|
355 |
+
"image_size_xyxy_tgt": image_size_xyxy_tgt.to(self.device),
|
356 |
+
"area": ops.box_area(target.boxes.to(self.device)),
|
357 |
+
})
|
358 |
+
|
359 |
+
return new_targets, torch.stack(diffused_boxes), torch.stack(noises), torch.stack(ts)
|
360 |
+
|
361 |
+
def inference(self, box_cls, box_pred):
|
362 |
+
"""
|
363 |
+
Arguments:
|
364 |
+
box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
|
365 |
+
The tensor predicts the classification probability for each proposal.
|
366 |
+
box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
|
367 |
+
The tensor predicts 4-vector (x,y,w,h) box
|
368 |
+
regression values for every proposal
|
369 |
+
image_sizes (List[torch.Size]): the input image sizes
|
370 |
+
|
371 |
+
Returns:
|
372 |
+
results (List[Instances]): a list of #images elements.
|
373 |
+
"""
|
374 |
+
results = []
|
375 |
+
boxes_output = []
|
376 |
+
logits_output = []
|
377 |
+
labels_output = []
|
378 |
+
|
379 |
+
if self.use_focal or self.use_fed_loss:
|
380 |
+
scores = torch.sigmoid(box_cls)
|
381 |
+
labels = torch.arange(self.num_classes, device=self.device). \
|
382 |
+
unsqueeze(0).repeat(self.num_proposals, 1).flatten(0, 1)
|
383 |
+
|
384 |
+
for i, (scores_per_image, box_pred_per_image) in enumerate(zip(
|
385 |
+
scores, box_pred
|
386 |
+
)):
|
387 |
+
scores_per_image, topk_indices = scores_per_image.flatten(0, 1).topk(self.num_proposals, sorted=False)
|
388 |
+
labels_per_image = labels[topk_indices]
|
389 |
+
box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(1, self.num_classes, 1).view(-1, 4)
|
390 |
+
box_pred_per_image = box_pred_per_image[topk_indices]
|
391 |
+
|
392 |
+
if self.sampling_timesteps > 1:
|
393 |
+
return box_pred_per_image, scores_per_image, labels_per_image
|
394 |
+
|
395 |
+
if self.use_nms:
|
396 |
+
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
|
397 |
+
box_pred_per_image = box_pred_per_image[keep]
|
398 |
+
scores_per_image = scores_per_image[keep]
|
399 |
+
labels_per_image = labels_per_image[keep]
|
400 |
+
|
401 |
+
boxes_output.append(box_pred_per_image)
|
402 |
+
logits_output.append(scores_per_image)
|
403 |
+
labels_output.append(labels_per_image)
|
404 |
+
else:
|
405 |
+
# For each box we assign the best class or the second best if the best on is `no_object`.
|
406 |
+
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)
|
407 |
+
|
408 |
+
for i, (scores_per_image, labels_per_image, box_pred_per_image) in enumerate(zip(
|
409 |
+
scores, labels, box_pred
|
410 |
+
)):
|
411 |
+
if self.sampling_timesteps > 1:
|
412 |
+
return box_pred_per_image, scores_per_image, labels_per_image
|
413 |
+
|
414 |
+
if self.use_nms:
|
415 |
+
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
|
416 |
+
box_pred_per_image = box_pred_per_image[keep]
|
417 |
+
scores_per_image = scores_per_image[keep]
|
418 |
+
labels_per_image = labels_per_image[keep]
|
419 |
+
|
420 |
+
boxes_output.append(box_pred_per_image)
|
421 |
+
logits_output.append(scores_per_image)
|
422 |
+
labels_output.append(labels_per_image)
|
423 |
+
|
424 |
+
return boxes_output, logits_output, labels_output
|