Update README.md
Browse files
README.md
CHANGED
@@ -10,6 +10,12 @@ tags:
|
|
10 |
license: apache-2.0
|
11 |
language:
|
12 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# Hierarchy-Transformers/HiT-MiniLM-L12-SnomedCT
|
@@ -20,15 +26,23 @@ A **Hi**erarchy **T**ransformer Encoder (HiT) model that explicitly encodes enti
|
|
20 |
|
21 |
<!-- Provide a longer summary of what this model is. -->
|
22 |
|
23 |
-
HiT-MiniLM-L12-SnomedCT is a HiT model trained on
|
24 |
|
25 |
- **Developed by:** [Yuan He](https://www.yuanhe.wiki/), Zhangdie Yuan, Jiaoyan Chen, and Ian Horrocks
|
26 |
-
- **Model type:** Hierarchy Transformer Encoder (HiT)
|
27 |
- **License:** Apache license 2.0
|
28 |
-
- **Hierarchy**: SNOMED
|
29 |
-
- **Training Dataset**: Download `snomed.zip` from [Datasets for HiTs on Zenodo](https://zenodo.org/doi/10.5281/zenodo.10511042)
|
30 |
- **Pre-trained model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
|
31 |
-
- **Training Objectives**: Jointly optimised on *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
### Model Sources
|
34 |
|
@@ -58,7 +72,12 @@ gpu_id = 0
|
|
58 |
device = get_torch_device(gpu_id)
|
59 |
|
60 |
# load the model
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# entity names to be encoded.
|
64 |
entity_names = ["computer", "personal computer", "fruit", "berry"]
|
@@ -86,7 +105,8 @@ parent_norms = model.manifold.dist0(parent_entity_embeddings)
|
|
86 |
subsumption_scores = - (dists + centri_score_weight * (parent_norms - child_norms))
|
87 |
```
|
88 |
|
89 |
-
Training and evaluation scripts are available at [GitHub](https://github.com/KRR-Oxford/HierarchyTransformers).
|
|
|
90 |
Technical details are presented in the [paper](https://arxiv.org/abs/2401.11374).
|
91 |
|
92 |
|
@@ -105,7 +125,7 @@ HierarchyTransformer(
|
|
105 |
|
106 |
Preprint on arxiv: https://arxiv.org/abs/2401.11374.
|
107 |
|
108 |
-
*Yuan He, Zhangdie Yuan, Jiaoyan Chen, Ian Horrocks.* **Language Models as Hierarchy Encoders.**
|
109 |
|
110 |
```
|
111 |
@article{he2024language,
|
@@ -116,6 +136,7 @@ Preprint on arxiv: https://arxiv.org/abs/2401.11374.
|
|
116 |
}
|
117 |
```
|
118 |
|
|
|
119 |
## Model Card Contact
|
120 |
|
121 |
-
For any queries or feedback, please contact Yuan He (yuan.he
|
|
|
10 |
license: apache-2.0
|
11 |
language:
|
12 |
- en
|
13 |
+
metrics:
|
14 |
+
- precision
|
15 |
+
- recall
|
16 |
+
- f1
|
17 |
+
base_model:
|
18 |
+
- sentence-transformers/all-MiniLM-L12-v2
|
19 |
---
|
20 |
|
21 |
# Hierarchy-Transformers/HiT-MiniLM-L12-SnomedCT
|
|
|
26 |
|
27 |
<!-- Provide a longer summary of what this model is. -->
|
28 |
|
29 |
+
HiT-MiniLM-L12-SnomedCT is a HiT model trained on SNOMED-CT's concept subsumption hierarchy (TBox).
|
30 |
|
31 |
- **Developed by:** [Yuan He](https://www.yuanhe.wiki/), Zhangdie Yuan, Jiaoyan Chen, and Ian Horrocks
|
32 |
+
- **Model type:** Hierarchy Transformer Encoder (HiT)
|
33 |
- **License:** Apache license 2.0
|
34 |
+
- **Hierarchy**: SNOMED-CT (TBox)
|
35 |
+
- **Training Dataset**: Download `snomed-mixed.zip` from [Datasets for HiTs on Zenodo](https://zenodo.org/doi/10.5281/zenodo.10511042)
|
36 |
- **Pre-trained model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
|
37 |
+
- **Training Objectives**: Jointly optimised on *Hyperbolic Clustering* and *Hyperbolic Centripetal* losses (see definitions in the [paper](https://arxiv.org/abs/2401.11374))
|
38 |
+
|
39 |
+
### Model Versions
|
40 |
+
|
41 |
+
| **Version** | **Model Revision** | **Note** |
|
42 |
+
|------------|---------|----------|
|
43 |
+
|v1.0 (Random Negatives)| `main` or `v1-random-negatives`| The variant trained on random negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374).|
|
44 |
+
|v1.0 (Hard Negatives)| `v1-hard-negatives` | The variant trained on hard negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374). |
|
45 |
+
|
46 |
|
47 |
### Model Sources
|
48 |
|
|
|
72 |
device = get_torch_device(gpu_id)
|
73 |
|
74 |
# load the model
|
75 |
+
revision = "main" # change for a different version
|
76 |
+
model = HierarchyTransformer.from_pretrained(
|
77 |
+
model_name_or_path='Hierarchy-Transformers/HiT-MiniLM-L12-SnomedCT',
|
78 |
+
revision=revision
|
79 |
+
device=device
|
80 |
+
)
|
81 |
|
82 |
# entity names to be encoded.
|
83 |
entity_names = ["computer", "personal computer", "fruit", "berry"]
|
|
|
105 |
subsumption_scores = - (dists + centri_score_weight * (parent_norms - child_norms))
|
106 |
```
|
107 |
|
108 |
+
Training and evaluation scripts are available at [GitHub](https://github.com/KRR-Oxford/HierarchyTransformers/tree/main/scripts). See `scripts/evaluate.py` for how we determine the hyperparameters on the validation set for subsumption prediction.
|
109 |
+
|
110 |
Technical details are presented in the [paper](https://arxiv.org/abs/2401.11374).
|
111 |
|
112 |
|
|
|
125 |
|
126 |
Preprint on arxiv: https://arxiv.org/abs/2401.11374.
|
127 |
|
128 |
+
*Yuan He, Zhangdie Yuan, Jiaoyan Chen, Ian Horrocks.* **Language Models as Hierarchy Encoders.** To Appear at NeurIPS 2024.
|
129 |
|
130 |
```
|
131 |
@article{he2024language,
|
|
|
136 |
}
|
137 |
```
|
138 |
|
139 |
+
|
140 |
## Model Card Contact
|
141 |
|
142 |
+
For any queries or feedback, please contact Yuan He (`yuan.he(at)cs.ox.ac.uk`).
|