--- library_name: transformers license: mit base_model: microsoft/table-transformer-structure-recognition-v1.1-all tags: - generated_from_trainer datasets: - tr-fin_table-dataset-v4 model-index: - name: table-transformer-structure-recognition-v1.1-all-finetuned-v4 results: [] --- # table-transformer-structure-recognition-v1.1-all-finetuned-v4 This model is a fine-tuned version of [microsoft/table-transformer-structure-recognition-v1.1-all](https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all) on the tr-fin_table-dataset-v4 dataset. It achieves the following results on the evaluation set: - Loss: 1.5814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8161 | 12.5 | 50 | 1.8594 | | 2.1356 | 25.0 | 100 | 1.8244 | | 1.9666 | 37.5 | 150 | 1.7812 | | 2.686 | 50.0 | 200 | 1.7117 | | 1.8873 | 62.5 | 250 | 1.6662 | | 2.0797 | 75.0 | 300 | 1.6360 | | 2.2612 | 87.5 | 350 | 1.6419 | | 1.954 | 100.0 | 400 | 1.6110 | | 2.0358 | 112.5 | 450 | 1.6159 | | 1.9712 | 125.0 | 500 | 1.6164 | | 2.1658 | 137.5 | 550 | 1.6242 | | 2.7702 | 150.0 | 600 | 1.6097 | | 1.9429 | 162.5 | 650 | 1.6083 | | 1.947 | 175.0 | 700 | 1.5989 | | 2.0561 | 187.5 | 750 | 1.6029 | | 2.0323 | 200.0 | 800 | 1.5877 | | 2.0326 | 212.5 | 850 | 1.5870 | | 1.7113 | 225.0 | 900 | 1.5835 | | 1.6647 | 237.5 | 950 | 1.5811 | | 2.2978 | 250.0 | 1000 | 1.5814 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.0