完善ModelCard
Browse files
README.md
CHANGED
@@ -1,62 +1,160 @@
|
|
1 |
-
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
base_model: distilbert-base-uncased
|
5 |
tags:
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
metrics:
|
8 |
-
|
|
|
9 |
model-index:
|
10 |
-
- name: imdb-sentiment-distilbert
|
11 |
-
results: []
|
12 |
-
---
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.3455
|
22 |
-
- Accuracy: 0.85
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
- learning_rate: 2e-05
|
42 |
-
- train_batch_size: 16
|
43 |
-
- eval_batch_size: 16
|
44 |
-
- seed: 42
|
45 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
-
- lr_scheduler_type: linear
|
47 |
-
- num_epochs: 2
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
| No log | 1.0 | 63 | 0.4222 | 0.844 |
|
54 |
-
| No log | 2.0 | 126 | 0.3455 | 0.85 |
|
55 |
|
|
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
- Pytorch 2.8.0+cu126
|
61 |
-
- Datasets 4.0.0
|
62 |
-
- Tokenizers 0.22.0
|
|
|
1 |
+
这部分是YAML元数据,Hugging Face会用它来分类和展示你的模型
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
base_model: distilbert-base-uncased
|
5 |
tags:
|
6 |
+
|
7 |
+
sentiment-analysis # 任务标签
|
8 |
+
|
9 |
+
text-classification # 任务标签
|
10 |
+
|
11 |
+
imdb # 数据集标签
|
12 |
+
|
13 |
+
generated_from_trainer # 表明是使用Trainer训练的
|
14 |
metrics:
|
15 |
+
|
16 |
+
accuracy
|
17 |
model-index:
|
|
|
|
|
|
|
18 |
|
19 |
+
name: imdb-sentiment-distilbert
|
20 |
+
results:
|
21 |
+
|
22 |
+
task:
|
23 |
+
type: text-classification
|
24 |
+
dataset:
|
25 |
+
name: imdb
|
26 |
+
type: imdb
|
27 |
+
metrics:
|
28 |
+
|
29 |
+
name: Accuracy
|
30 |
+
type: accuracy
|
31 |
+
value: 0.85
|
32 |
+
|
33 |
+
情感分析模型:distilbert-base-uncased-imdb
|
34 |
+
这是一个基于 distilbert-base-uncased 模型,在经典的 IMDB 电影评论数据集 上进行微调的情感分析模型。它能够高效地判断一段英文文本所表达的情感是正面的还是负面的。
|
35 |
+
|
36 |
+
🚀 模型性能
|
37 |
+
该模型在 IMDB 数据集的评估集上取得了以下性能:
|
38 |
+
|
39 |
+
指标 (Metric)
|
40 |
+
|
41 |
+
数值 (Value)
|
42 |
+
|
43 |
+
评估损失 (Loss)
|
44 |
+
|
45 |
+
0.3455
|
46 |
+
|
47 |
+
准确率 (Accuracy)
|
48 |
+
|
49 |
+
0.85
|
50 |
+
|
51 |
+
💡 如何使用
|
52 |
+
您可以非常方便地使用 transformers 库中的 pipeline 来调用这个模型。
|
53 |
+
|
54 |
+
# 安装transformers库
|
55 |
+
# pip install transformers
|
56 |
+
|
57 |
+
from transformers import pipeline
|
58 |
+
|
59 |
+
# 使用您的模型仓库ID加载pipeline
|
60 |
+
# 请将 "YOUR_USERNAME/YOUR_REPO_NAME" 替换为您的模型地址
|
61 |
+
sentiment_pipeline = pipeline(
|
62 |
+
"sentiment-analysis",
|
63 |
+
model="YOUR_USERNAME/imdb-sentiment-distilbert"
|
64 |
+
)
|
65 |
+
|
66 |
+
# 测试正面评论
|
67 |
+
positive_comment = "This movie was absolutely fantastic, a masterpiece of modern cinema!"
|
68 |
+
result_pos = sentiment_pipeline(positive_comment)
|
69 |
+
print(f"评论: '{positive_comment}'")
|
70 |
+
print(f"情感分析结果: {result_pos}")
|
71 |
+
# 预期输出: [{'label': 'POSITIVE', 'score': ...}]
|
72 |
+
|
73 |
+
print("-" * 50)
|
74 |
+
|
75 |
+
# 测试负面评论
|
76 |
+
negative_comment = "I would not recommend this film, it was quite boring and a waste of time."
|
77 |
+
result_neg = sentiment_pipeline(negative_comment)
|
78 |
+
print(f"评论: '{negative_comment}'")
|
79 |
+
print(f"情感分析结果: {result_neg}")
|
80 |
+
# 预期输出: [{'label': 'NEGATIVE', 'score': ...}]
|
81 |
+
|
82 |
+
📚 训练细节
|
83 |
+
训练数据
|
84 |
+
本模型使用了 imdb 数据集进行训练和评估。该数据集包含 50,000 条电影评论,其中 25,000 条用于训练,25,000 条用于测试。每条评论都被标记为 正面 (POSITIVE) 或 负面 (NEGATIVE)。为了快速完成项目,本次训练使用了其中的一小部分样本(1000条训练,1000条评估)。
|
85 |
+
|
86 |
+
训练过程
|
87 |
+
模型微调是基于 Hugging Face transformers 库的 Trainer API 完成的。
|
88 |
+
|
89 |
+
超参数 (Hyperparameters)
|
90 |
+
超参数
|
91 |
+
|
92 |
+
值
|
93 |
+
|
94 |
+
learning_rate
|
95 |
+
|
96 |
+
2e-05
|
97 |
+
|
98 |
+
train_batch_size
|
99 |
+
|
100 |
+
16
|
101 |
+
|
102 |
+
eval_batch_size
|
103 |
+
|
104 |
+
16
|
105 |
+
|
106 |
+
seed
|
107 |
+
|
108 |
+
42
|
109 |
+
|
110 |
+
optimizer
|
111 |
+
|
112 |
+
AdamW (betas=(0.9,0.999), epsilon=1e-08)
|
113 |
+
|
114 |
+
lr_scheduler_type
|
115 |
+
|
116 |
+
linear
|
117 |
+
|
118 |
+
num_epochs
|
119 |
+
|
120 |
+
2
|
121 |
+
|
122 |
+
训练结果日志
|
123 |
+
Training Loss
|
124 |
+
|
125 |
+
Epoch
|
126 |
+
|
127 |
+
Step
|
128 |
|
129 |
+
Validation Loss
|
130 |
|
131 |
+
Accuracy
|
|
|
|
|
|
|
132 |
|
133 |
+
No log
|
134 |
|
135 |
+
1.0
|
136 |
|
137 |
+
63
|
138 |
|
139 |
+
0.4222
|
140 |
|
141 |
+
0.844
|
142 |
|
143 |
+
No log
|
144 |
|
145 |
+
2.0
|
146 |
|
147 |
+
126
|
148 |
|
149 |
+
0.3455
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
0.85
|
152 |
|
153 |
+
框架版本
|
154 |
+
Transformers: 4.56.0
|
|
|
|
|
155 |
|
156 |
+
Pytorch: 2.8.0+cu126
|
157 |
|
158 |
+
Datasets: 4.0.0
|
159 |
|
160 |
+
Tokenizers: 0.22.0
|
|
|
|
|
|