Hplm
/

nielsr HF Staff commited on
Commit
a3f52b1
·
verified ·
1 Parent(s): f7b0f47

Improve model card: Add metadata, link to paper and code, and basic description

Browse files

This PR improves the model card by:

* Adding the `text-generation` pipeline tag.
* Linking to the paper.
* Linking to the GitHub repository.
* Adding License information (assumed MIT).
* Adding a brief model description.
* Adding basic usage example.
* Adding tags.

Please review and update the model card with more details as needed.

Files changed (1) hide show
  1. README.md +57 -80
README.md CHANGED
@@ -1,127 +1,110 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
  [More Information Needed]
91
 
92
-
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
  [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
  [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
  [More Information Needed]
126
 
127
  ### Results
@@ -130,27 +113,23 @@ Use the code below to get started with the model.
130
 
131
  #### Summary
132
 
 
133
 
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
  [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
@@ -168,29 +147,27 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
168
 
169
  [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
  [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
  [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
  [More Information Needed]
196
 
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - llama
6
+ - text-generation
7
+ - causal-lm
8
+ license: mit
9
  ---
10
 
11
  # Model Card for Model ID
12
 
13
+ This model is a large language model trained using the methods described in the paper [Pretraining Language Models for Diachronic Linguistic Change Discovery](https://huggingface.co/papers/2504.05523). It can be used for text generation tasks.
 
 
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
 
19
+ This model is a large language model trained on a historical text corpus. Further details about the model architecture and training are available in the provided links.
 
 
20
 
21
+ * **Developed by:** [More Information Needed]
22
+ * **Funded by \[optional]:** [More Information Needed]
23
+ * **Shared by \[optional]:** [More Information Needed]
24
+ * **Model type:** Llama
25
+ * **Language(s) (NLP):** English
26
+ * **License:** MIT
27
+ * **Finetuned from model \[optional]:** [More Information Needed]
28
 
29
+ ### Model Sources \[optional]
30
 
31
+ * **Repository:** [https://github.com/comp-int-hum/historical-perspectival-lm](https://github.com/comp-int-hum/historical-perspectival-lm)
32
+ * **Paper \[optional]:** [https://huggingface.co/papers/2504.05523](https://huggingface.co/papers/2504.05523)
33
+ * **Demo \[optional]:** [More Information Needed]
 
 
34
 
35
  ## Uses
36
 
 
 
37
  ### Direct Use
38
 
39
+ The model can be used directly for text generation tasks, such as generating text in a specific historical style or completing text prompts.
40
 
41
+ ### Downstream Use \[optional]
 
 
42
 
43
+ The model could be fine-tuned for various downstream tasks such as text classification, summarization, or question answering related to historical text.
 
 
44
 
45
  ### Out-of-Scope Use
46
 
47
+ The model may not perform well on tasks outside of text generation and historical text analysis. Its performance on contemporary language tasks is likely to be suboptimal.
 
 
48
 
49
  ## Bias, Risks, and Limitations
50
 
51
+ The model's training data consists of historical texts, which may reflect biases present in those texts. The model may generate outputs that perpetuate these biases. The model's performance will vary based on the characteristics of the input text. More information is needed for a comprehensive analysis of bias and risk.
 
 
52
 
53
  ### Recommendations
54
 
55
+ Users should be aware of the potential for bias in the model's outputs and use caution when interpreting its predictions. The model should not be used for applications where biased or inaccurate outputs could have harmful consequences.
 
 
56
 
57
  ## How to Get Started with the Model
58
 
59
  Use the code below to get started with the model.
60
 
61
+ ```python
62
+ from transformers import AutoTokenizer, AutoModelForCausalLM
63
+
64
+ model_id = "your_model_id" # Replace this with the actual model id.
65
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
66
+ model = AutoModelForCausalLM.from_pretrained(model_id)
67
+
68
+ prompt = "This is a test prompt:"
69
+ inputs = tokenizer(prompt, return_tensors="pt")
70
+ outputs = model.generate(**inputs)
71
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
72
+ ```
73
 
74
  ## Training Details
75
 
76
  ### Training Data
77
 
78
+ [More Information Needed, Link to Dataset Card and description]
 
 
79
 
80
  ### Training Procedure
81
 
82
+ #### Preprocessing \[optional]
 
 
83
 
84
  [More Information Needed]
85
 
 
86
  #### Training Hyperparameters
87
 
88
+ * **Training regime:** [More Information Needed]
 
 
89
 
90
+ #### Speeds, Sizes, Times \[optional]
91
 
92
  [More Information Needed]
93
 
94
  ## Evaluation
95
 
 
 
96
  ### Testing Data, Factors & Metrics
97
 
98
  #### Testing Data
99
 
100
+ [More Information Needed, Link to Dataset Card and description]
 
 
101
 
102
  #### Factors
103
 
 
 
104
  [More Information Needed]
105
 
106
  #### Metrics
107
 
 
 
108
  [More Information Needed]
109
 
110
  ### Results
 
113
 
114
  #### Summary
115
 
116
+ [More Information Needed]
117
 
118
+ ## Model Examination \[optional]
 
 
 
119
 
120
  [More Information Needed]
121
 
122
  ## Environmental Impact
123
 
 
 
124
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
125
 
126
+ * **Hardware Type:** [More Information Needed]
127
+ * **Hours used:** [More Information Needed]
128
+ * **Cloud Provider:** [More Information Needed]
129
+ * **Compute Region:** [More Information Needed]
130
+ * **Carbon Emitted:** [More Information Needed]
131
 
132
+ ## Technical Specifications \[optional]
133
 
134
  ### Model Architecture and Objective
135
 
 
147
 
148
  [More Information Needed]
149
 
150
+ ## Citation \[optional]
151
 
152
+ If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section.
153
 
154
  **BibTeX:**
155
 
156
+ [More Information Needed, Add Bibtex for 2504.05523]
157
 
158
  **APA:**
159
 
160
+ [More Information Needed, Add APA for 2504.05523]
 
 
161
 
162
+ ## Glossary \[optional]
163
 
164
  [More Information Needed]
165
 
166
+ ## More Information \[optional]
167
 
168
  [More Information Needed]
169
 
170
+ ## Model Card Authors \[optional]
171
 
172
  [More Information Needed]
173