Hplm
/

nielsr HF Staff commited on
Commit
519f601
·
verified ·
1 Parent(s): fe3e331

Add pipeline tag, link to paper and Github repo, add a basic description

Browse files

This PR improves the model card and includes a pipeline tag, ensuring people can find your model at https://huggingface.co/models?pipeline_tag=text-generation&sort=trending.
It also adds a link to the paper page and Github repository, and includes a basic description of the model.

Files changed (1) hide show
  1. README.md +32 -55
README.md CHANGED
@@ -1,127 +1,112 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
  - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
  - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
 
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
  [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
  [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
  #### Preprocessing [optional]
89
 
90
  [More Information Needed]
91
 
92
-
93
  #### Training Hyperparameters
94
 
95
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
  [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
  [More Information Needed]
114
 
115
  #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
  [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
  [More Information Needed]
126
 
127
  ### Results
@@ -130,18 +115,12 @@ Use the code below to get started with the model.
130
 
131
  #### Summary
132
 
133
-
134
-
135
  ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
  [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
  - **Hardware Type:** [More Information Needed]
@@ -182,8 +161,6 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
182
 
183
  ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
  [More Information Needed]
188
 
189
  ## More Information [optional]
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - historical
6
+ - language-model
7
+ license: mit
8
  ---
9
 
10
  # Model Card for Model ID
11
 
12
+ This model is a LlamaForCausalLM model that was trained as part of research on historical perspectival language models.
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
+ This model is a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
+ - **Developed by:** Elisabeth Fittschen
 
 
21
  - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** Elisabeth Fittschen
23
+ - **Model type:** LlamaForCausalLM
24
+ - **Language(s) (NLP):** English
25
+ - **License:** MIT
26
+ - **Finetuned from model [optional]:** Llama
27
 
28
  ### Model Sources [optional]
29
 
 
 
30
  - **Repository:** [More Information Needed]
31
+ - **Paper [optional]:** https://huggingface.co/papers/2504.05523
32
+ - **Code:** https://github.com/comp-int-hum/historical-perspectival-lm
33
  - **Demo [optional]:** [More Information Needed]
34
 
35
  ## Uses
36
 
 
 
37
  ### Direct Use
38
 
39
+ This model can be used for text generation, particularly for exploring different historical perspectives.
 
 
40
 
41
  ### Downstream Use [optional]
42
 
43
+ The model can be fine-tuned for specific tasks related to language analysis over time, such as identifying shifts in word usage or sentiment.
 
 
44
 
45
  ### Out-of-Scope Use
46
 
47
+ This model should not be used for generating harmful or biased content.
 
 
48
 
49
  ## Bias, Risks, and Limitations
50
 
 
 
51
  [More Information Needed]
52
 
53
  ### Recommendations
54
 
 
 
55
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
56
 
57
  ## How to Get Started with the Model
58
 
59
  Use the code below to get started with the model.
60
 
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+ model_name = "Model ID" # Replace with the actual model ID
65
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
66
+ model = AutoModelForCausalLM.from_pretrained(model_name)
67
+
68
+ prompt = "Example prompt:"
69
+ input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
70
+ output = model.generate(**input_ids)
71
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
72
+
73
+ print(generated_text)
74
+ ```
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
 
 
80
  [More Information Needed]
81
 
82
  ### Training Procedure
83
 
 
 
84
  #### Preprocessing [optional]
85
 
86
  [More Information Needed]
87
 
 
88
  #### Training Hyperparameters
89
 
90
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
91
 
92
  #### Speeds, Sizes, Times [optional]
93
 
 
 
94
  [More Information Needed]
95
 
96
  ## Evaluation
97
 
 
 
98
  ### Testing Data, Factors & Metrics
99
 
100
  #### Testing Data
101
 
 
 
102
  [More Information Needed]
103
 
104
  #### Factors
105
 
 
 
106
  [More Information Needed]
107
 
108
  #### Metrics
109
 
 
 
110
  [More Information Needed]
111
 
112
  ### Results
 
115
 
116
  #### Summary
117
 
 
 
118
  ## Model Examination [optional]
119
 
 
 
120
  [More Information Needed]
121
 
122
  ## Environmental Impact
123
 
 
 
124
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
125
 
126
  - **Hardware Type:** [More Information Needed]
 
161
 
162
  ## Glossary [optional]
163
 
 
 
164
  [More Information Needed]
165
 
166
  ## More Information [optional]