|  | from typing import Any, Dict | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | from peft import PeftConfig, PeftModel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EndpointHandler: | 
					
						
						|  | def __init__(self, path=""): | 
					
						
						|  |  | 
					
						
						|  | self.tokenizer = AutoTokenizer.from_pretrained(path) | 
					
						
						|  | try: | 
					
						
						|  | config = PeftConfig.from_pretrained(path) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained( | 
					
						
						|  | config.base_model_name_or_path, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | load_in_8bit=True, | 
					
						
						|  | device_map="auto", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | model.resize_token_embeddings(len(self.tokenizer)) | 
					
						
						|  | model = PeftModel.from_pretrained(model, path) | 
					
						
						|  | except Exception: | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained( | 
					
						
						|  | path, | 
					
						
						|  | device_map="auto", | 
					
						
						|  | load_in_8bit=True, | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | self.model = model | 
					
						
						|  | self.device = "cuda" if torch.cuda.is_available() else "cpu" | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: | 
					
						
						|  |  | 
					
						
						|  | inputs = data.pop("inputs", data) | 
					
						
						|  | parameters = data.pop("parameters", None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if parameters is not None: | 
					
						
						|  | outputs = self.model.generate(**inputs, **parameters) | 
					
						
						|  | else: | 
					
						
						|  | outputs = self.model.generate(**inputs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
						
						|  |  | 
					
						
						|  | return [{"generated_text": prediction}] | 
					
						
						|  |  |