edbeeching HF Staff commited on
Commit
f75c568
·
verified ·
1 Parent(s): 4e5775b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -161
README.md CHANGED
@@ -1,199 +1,120 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
 
 
 
 
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ pipeline_tag: image-to-text
5
+ inference: false
6
+ arxiv: 2304.08485
7
+ datasets:
8
+ - HuggingFaceH4/llava-instruct-mix-vsft
9
  ---
10
+ # Model Card
11
 
12
+ HuggingFaceH4/vsft-llava-1.5-7b-hf-trl is a Vision Language Model, created by performing VSFT on the [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) model
13
 
14
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/q5GXv6Om4Hf2n6IB3e7DQ.png)
15
 
16
+ Below is the model card of Llava model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).
17
 
18
+ Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing)
19
 
20
+ Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/llava-hf/llava-4bit)
21
 
 
22
 
23
+ ## Model details
24
 
25
+ **Model type:**
26
+ LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
27
+ It is an auto-regressive language model, based on the transformer architecture.
28
 
29
+ **Model date:**
30
+ The model was trained on April the 11th 2024
 
 
 
 
 
31
 
32
+ **Example training script**
33
+ https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py
34
 
35
+ ## How to use the model
36
 
37
+ The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
 
 
38
 
39
+ ### Using `pipeline`:
40
 
41
+ ```python
42
+ from transformers import pipeline
43
+ from PIL import Image
44
+ import requests
45
 
46
+ model_id = "llava-hf/llava-1.5-7b-hf"
47
+ pipe = pipeline("image-to-text", model=model_id)
48
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
49
 
50
+ image = Image.open(requests.get(url, stream=True).raw)
51
+ prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
52
 
53
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
54
+ print(outputs)
55
+ >>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
56
+ ```
57
 
58
+ ### Using pure `transformers`:
59
 
60
+ Below is an example script to run generation in `float16` precision on a GPU device:
61
 
62
+ ```python
63
+ import requests
64
+ from PIL import Image
65
 
66
+ import torch
67
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
68
 
69
+ model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
70
 
71
+ prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are these?\nASSISTANT:"
72
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
73
 
74
+ model = LlavaForConditionalGeneration.from_pretrained(
75
+ model_id,
76
+ torch_dtype=torch.float16,
77
+ low_cpu_mem_usage=True,
78
+ ).to(0)
79
 
80
+ processor = AutoProcessor.from_pretrained(model_id)
81
 
 
82
 
83
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
84
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
85
 
86
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
87
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
88
+ ```
89
 
90
+ ### Model optimization
91
 
92
+ #### 4-bit quantization through `bitsandbytes` library
93
 
94
+ First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
95
 
96
+ ```diff
97
+ model = LlavaForConditionalGeneration.from_pretrained(
98
+ model_id,
99
+ torch_dtype=torch.float16,
100
+ low_cpu_mem_usage=True,
101
+ + load_in_4bit=True
102
+ )
103
+ ```
104
 
105
+ #### Use Flash-Attention 2 to further speed-up generation
106
 
107
+ First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
108
 
109
+ ```diff
110
+ model = LlavaForConditionalGeneration.from_pretrained(
111
+ model_id,
112
+ torch_dtype=torch.float16,
113
+ low_cpu_mem_usage=True,
114
+ + use_flash_attention_2=True
115
+ ).to(0)
116
+ ```
117
 
118
+ ## License
119
+ Llama 2 is licensed under the LLAMA 2 Community License,
120
+ Copyright (c) Meta Platforms, Inc. All Rights Reserved.