Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,120 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
###
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
-
|
|
|
65 |
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pipeline_tag: image-to-text
|
5 |
+
inference: false
|
6 |
+
arxiv: 2304.08485
|
7 |
+
datasets:
|
8 |
+
- HuggingFaceH4/llava-instruct-mix-vsft
|
9 |
---
|
10 |
+
# Model Card
|
11 |
|
12 |
+
HuggingFaceH4/vsft-llava-1.5-7b-hf-trl is a Vision Language Model, created by performing VSFT on the [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) model
|
13 |
|
14 |
+

|
15 |
|
16 |
+
Below is the model card of Llava model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).
|
17 |
|
18 |
+
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing)
|
19 |
|
20 |
+
Or check out our Spaces demo! [](https://huggingface.co/spaces/llava-hf/llava-4bit)
|
21 |
|
|
|
22 |
|
23 |
+
## Model details
|
24 |
|
25 |
+
**Model type:**
|
26 |
+
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
|
27 |
+
It is an auto-regressive language model, based on the transformer architecture.
|
28 |
|
29 |
+
**Model date:**
|
30 |
+
The model was trained on April the 11th 2024
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
**Example training script**
|
33 |
+
https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py
|
34 |
|
35 |
+
## How to use the model
|
36 |
|
37 |
+
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
|
|
|
|
|
38 |
|
39 |
+
### Using `pipeline`:
|
40 |
|
41 |
+
```python
|
42 |
+
from transformers import pipeline
|
43 |
+
from PIL import Image
|
44 |
+
import requests
|
45 |
|
46 |
+
model_id = "llava-hf/llava-1.5-7b-hf"
|
47 |
+
pipe = pipeline("image-to-text", model=model_id)
|
48 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
49 |
|
50 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
51 |
+
prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
|
52 |
|
53 |
+
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
54 |
+
print(outputs)
|
55 |
+
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
|
56 |
+
```
|
57 |
|
58 |
+
### Using pure `transformers`:
|
59 |
|
60 |
+
Below is an example script to run generation in `float16` precision on a GPU device:
|
61 |
|
62 |
+
```python
|
63 |
+
import requests
|
64 |
+
from PIL import Image
|
65 |
|
66 |
+
import torch
|
67 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
68 |
|
69 |
+
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
|
70 |
|
71 |
+
prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are these?\nASSISTANT:"
|
72 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
73 |
|
74 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
75 |
+
model_id,
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
low_cpu_mem_usage=True,
|
78 |
+
).to(0)
|
79 |
|
80 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
81 |
|
|
|
82 |
|
83 |
+
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
84 |
+
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
85 |
|
86 |
+
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
87 |
+
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
88 |
+
```
|
89 |
|
90 |
+
### Model optimization
|
91 |
|
92 |
+
#### 4-bit quantization through `bitsandbytes` library
|
93 |
|
94 |
+
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
|
95 |
|
96 |
+
```diff
|
97 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
98 |
+
model_id,
|
99 |
+
torch_dtype=torch.float16,
|
100 |
+
low_cpu_mem_usage=True,
|
101 |
+
+ load_in_4bit=True
|
102 |
+
)
|
103 |
+
```
|
104 |
|
105 |
+
#### Use Flash-Attention 2 to further speed-up generation
|
106 |
|
107 |
+
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
108 |
|
109 |
+
```diff
|
110 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
111 |
+
model_id,
|
112 |
+
torch_dtype=torch.float16,
|
113 |
+
low_cpu_mem_usage=True,
|
114 |
+
+ use_flash_attention_2=True
|
115 |
+
).to(0)
|
116 |
+
```
|
117 |
|
118 |
+
## License
|
119 |
+
Llama 2 is licensed under the LLAMA 2 Community License,
|
120 |
+
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|