--- license: mit datasets: - fka/awesome-chatgpt-prompts - facebook/seamless-interaction - bigcode/the-stack - bigcode/the-stack-v2-train-full-ids - yabramuvdi/MarcasColombia - vicgalle/alpaca-gpt4 - diffusers/pokemon-gpt4-captions - Rapidata/multilingual-llm-jokes-4o-claude-gemini - QuietImpostor/Claude-3-Opus-Claude-3.5-Sonnnet-9k language: - en metrics: - accuracy - bertscore base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2506 - mistralai/Mistral-7B-Instruct-v0.1 - meta-llama/Llama-3.1-8B-Instruct - meta-llama/Meta-Llama-3-8B-Instruct new_version: nanonets/Nanonets-OCR-s pipeline_tag: audio-to-audio library_name: adapter-transformers --- #!/usr/bin/env bash # ─────────────────────────────────────────────────────────── # One-step scaffold + build + push script for EmpiriX model repo # Usage: bash deploy_empirix.sh [--push] # Optional ENV vars: AWS_ACCOUNT_ID, AWS_REGION (defaults to us-east-1) # ─────────────────────────────────────────────────────────── set -euo pipefail # Configurable vars REPO_DIR="EmpiriX" MODEL_NAME="empirix" AWS_REGION="${AWS_REGION:-us-east-1}" AWS_ACCOUNT_ID="${AWS_ACCOUNT_ID:?Set AWS_ACCOUNT_ID env var for ECR push}" echo "🛠️ Scaffolding repository structure..." mkdir -p "${REPO_DIR}/tokenizer" # 1. config.json cat > "${REPO_DIR}/config.json" << 'EOF' { "architectures": ["EmpiriXModel"], "hidden_size": 512, "num_attention_heads": 8, "num_hidden_layers": 6, "initializer_range": 0.02, "vocab_size": 30000, "pad_token_id": 0 } EOF # 2. tokenizer files cat > "${REPO_DIR}/tokenizer/vocab.txt" << 'EOF' EOF cat > "${REPO_DIR}/tokenizer/tokenizer_config.json" << 'EOF' { "do_lower_case": true, "unk_token": "[UNK]", "pad_token": "[PAD]" } EOF # 3. modeling.py cat > "${REPO_DIR}/modeling.py" << 'EOF' from transformers import PreTrainedModel, PretrainedConfig class EmpiriXConfig(PretrainedConfig): model_type = "empirix" class EmpiriXModel(PreTrainedModel): config_class = EmpiriXConfig def __init__(self, config): super().__init__(config) # define your layers here def forward(self, input_ids, attention_mask=None): # implement forward logic return self._forward_impl(input_ids, attention_mask) EOF # 4. configuration.py cat > "${REPO_DIR}/configuration.py" << 'EOF' from transformers import PretrainedConfig class EmpiriXConfig(PretrainedConfig): model_type = "empirix" EOF # 5. training.py cat > "${REPO_DIR}/training.py" << 'EOF' from transformers import Trainer, TrainingArguments, AutoTokenizer from modeling import EmpiriXModel, EmpiriXConfig def main(): config = EmpiriXConfig() model = EmpiriXModel(config) tokenizer = AutoTokenizer.from_pretrained("tokenizer", use_fast=True) args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, save_steps=500, save_total_limit=2 ) trainer = Trainer( model=model, args=args, train_dataset=[], # replace with your Dataset eval_dataset=[], # replace with your Dataset tokenizer=tokenizer ) trainer.train() if __name__ == "__main__": main() EOF # 6. inference.py cat > "${REPO_DIR}/inference.py" << 'EOF' from fastapi import FastAPI from pydantic import BaseModel from transformers import EmpiriXConfig, EmpiriXModel, AutoTokenizer app = FastAPI() config = EmpiriXConfig.from_json_file("config.json") model = EmpiriXModel(config) tokenizer = AutoTokenizer.from_pretrained("tokenizer", use_fast=True) class Request(BaseModel): input: str @app.post("/infer") def infer(req: Request): inputs = tokenizer(req.input, return_tensors="pt") outputs = model(**inputs) return {"logits": outputs.logits.tolist()} EOF # 7. requirements.txt cat > "${REPO_DIR}/requirements.txt" << 'EOF' transformers>=4.0.0 torch>=2.0.0 fastapi>=0.85.0 uvicorn>=0.20.0 safetensors EOF # 8. Dockerfile cat > "${REPO_DIR}/Dockerfile" << 'EOF' FROM python:3.10-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . EXPOSE 8080 CMD ["uvicorn", "inference:app", "--host", "0.0.0.0", "--port", "8080"] EOF # 9. README.md & model_card.md cat > "${REPO_DIR}/README.md" << 'EOF' # EmpiriX A Proto-AGI-class on-device AI model. ## Quick Start 1. Clone & scaffold ```bash git clone && cd ${REPO_DIR} bash deploy_empirix.sh