Initial commit
Browse files- README.md +19 -8
- args.yml +10 -10
- env_kwargs.yml +1 -1
- ppo-seals-CartPole-v0.zip +2 -2
- ppo-seals-CartPole-v0/_stable_baselines3_version +1 -1
- ppo-seals-CartPole-v0/data +62 -59
- ppo-seals-CartPole-v0/policy.optimizer.pth +1 -1
- ppo-seals-CartPole-v0/policy.pth +2 -2
- ppo-seals-CartPole-v0/system_info.txt +9 -7
- replay.mp4 +2 -2
- results.json +1 -1
- train_eval_metrics.zip +2 -2
README.md
CHANGED
@@ -8,16 +8,17 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 500.00 +/- 0.00
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: seals/CartPole-v0
|
20 |
type: seals/CartPole-v0
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# **PPO** Agent playing **seals/CartPole-v0**
|
@@ -35,21 +36,26 @@ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
|
35 |
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
```
|
39 |
# Download model and save it into the logs/ folder
|
40 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga HumanCompatibleAI -f logs/
|
41 |
-
python enjoy
|
42 |
```
|
43 |
|
44 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
45 |
```
|
46 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga HumanCompatibleAI -f logs/
|
47 |
-
rl_zoo3
|
48 |
```
|
49 |
|
50 |
## Training (with the RL Zoo)
|
51 |
```
|
52 |
-
python train
|
53 |
# Upload the model and generate video (when possible)
|
54 |
python -m rl_zoo3.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga HumanCompatibleAI
|
55 |
```
|
@@ -74,3 +80,8 @@ OrderedDict([('batch_size', 256),
|
|
74 |
('vf_coef', 0.489343896591493),
|
75 |
('normalize', False)])
|
76 |
```
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: seals/CartPole-v0
|
16 |
type: seals/CartPole-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 500.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
# **PPO** Agent playing **seals/CartPole-v0**
|
|
|
36 |
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
```
|
45 |
# Download model and save it into the logs/ folder
|
46 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga HumanCompatibleAI -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env seals/CartPole-v0 -f logs/
|
48 |
```
|
49 |
|
50 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
```
|
52 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga HumanCompatibleAI -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env seals/CartPole-v0 -f logs/
|
54 |
```
|
55 |
|
56 |
## Training (with the RL Zoo)
|
57 |
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env seals/CartPole-v0 -f logs/
|
59 |
# Upload the model and generate video (when possible)
|
60 |
python -m rl_zoo3.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga HumanCompatibleAI
|
61 |
```
|
|
|
80 |
('vf_coef', 0.489343896591493),
|
81 |
('normalize', False)])
|
82 |
```
|
83 |
+
|
84 |
+
# Environment Arguments
|
85 |
+
```python
|
86 |
+
{'render_mode': 'rgb_array'}
|
87 |
+
```
|
args.yml
CHANGED
@@ -10,7 +10,7 @@
|
|
10 |
- - env_kwargs
|
11 |
- null
|
12 |
- - eval_episodes
|
13 |
-
-
|
14 |
- - eval_freq
|
15 |
- 25000
|
16 |
- - gym_packages
|
@@ -18,7 +18,7 @@
|
|
18 |
- - hyperparams
|
19 |
- null
|
20 |
- - log_folder
|
21 |
-
-
|
22 |
- - log_interval
|
23 |
- -1
|
24 |
- - max_total_trials
|
@@ -38,7 +38,7 @@
|
|
38 |
- - no_optim_plots
|
39 |
- false
|
40 |
- - num_threads
|
41 |
-
-
|
42 |
- - optimization_log_path
|
43 |
- null
|
44 |
- - optimize_hyperparameters
|
@@ -54,15 +54,15 @@
|
|
54 |
- - save_replay_buffer
|
55 |
- false
|
56 |
- - seed
|
57 |
-
-
|
58 |
- - storage
|
59 |
- null
|
60 |
- - study_name
|
61 |
- null
|
62 |
- - tensorboard_log
|
63 |
-
-
|
64 |
- - track
|
65 |
-
-
|
66 |
- - trained_agent
|
67 |
- ''
|
68 |
- - truncate_last_trajectory
|
@@ -74,8 +74,8 @@
|
|
74 |
- - verbose
|
75 |
- 1
|
76 |
- - wandb_entity
|
77 |
-
- ernestum
|
78 |
-
- - wandb_project_name
|
79 |
-
- seals-experts-normalized
|
80 |
-
- - yaml_file
|
81 |
- null
|
|
|
|
|
|
|
|
|
|
10 |
- - env_kwargs
|
11 |
- null
|
12 |
- - eval_episodes
|
13 |
+
- 0
|
14 |
- - eval_freq
|
15 |
- 25000
|
16 |
- - gym_packages
|
|
|
18 |
- - hyperparams
|
19 |
- null
|
20 |
- - log_folder
|
21 |
+
- gymnasium_models
|
22 |
- - log_interval
|
23 |
- -1
|
24 |
- - max_total_trials
|
|
|
38 |
- - no_optim_plots
|
39 |
- false
|
40 |
- - num_threads
|
41 |
+
- 4
|
42 |
- - optimization_log_path
|
43 |
- null
|
44 |
- - optimize_hyperparameters
|
|
|
54 |
- - save_replay_buffer
|
55 |
- false
|
56 |
- - seed
|
57 |
+
- 705888933
|
58 |
- - storage
|
59 |
- null
|
60 |
- - study_name
|
61 |
- null
|
62 |
- - tensorboard_log
|
63 |
+
- ''
|
64 |
- - track
|
65 |
+
- false
|
66 |
- - trained_agent
|
67 |
- ''
|
68 |
- - truncate_last_trajectory
|
|
|
74 |
- - verbose
|
75 |
- 1
|
76 |
- - wandb_entity
|
|
|
|
|
|
|
|
|
77 |
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
env_kwargs.yml
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
render_mode: rgb_array
|
ppo-seals-CartPole-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e57a2618e1ab32ee4c5267874ae9f630896bc73991bd68392f5c78e4ecf738d
|
3 |
+
size 139005
|
ppo-seals-CartPole-v0/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
2.2.0a3
|
ppo-seals-CartPole-v0/data
CHANGED
@@ -3,76 +3,49 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
23 |
":type:": "<class 'dict'>",
|
24 |
-
":serialized:": "
|
25 |
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
26 |
-
"net_arch":
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
}
|
37 |
-
]
|
38 |
},
|
39 |
-
"observation_space": {
|
40 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
41 |
-
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAD//3////9//9sPScD//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAP//f3///39/2w9JQP//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
42 |
-
"dtype": "float32",
|
43 |
-
"_shape": [
|
44 |
-
4
|
45 |
-
],
|
46 |
-
"low": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
|
47 |
-
"high": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
|
48 |
-
"bounded_below": "[ True True True True]",
|
49 |
-
"bounded_above": "[ True True True True]",
|
50 |
-
"_np_random": null
|
51 |
-
},
|
52 |
-
"action_space": {
|
53 |
-
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
54 |
-
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgMvWU2I7QWSDdygaT5++KSAATCN90WccEqDtnFV3Y9MyLlpJIkIvbFJbpmpRHJX7SZr4rNIblBqp+ccsvAR6E3PBn61gcJfsxhg3x3PqnSmOqgLqwqIfkWzrz6Tf7NSrm1SSpbmnGNt3g/H87CT3UgGUR8+HrL79sEyK19tohIeSCjwJLlaEiqt73sZ9FJuvWOgJ3QNRV0zMGqSYGeuLv+TZ0EN3+cyUE+2SDHCnC8u+eTF8fJciknY5HW6tbE8ba0T1dJIbNDabvq3Lgzsjaj2J1a7ewVritpsjEYCurZVZpRofQC3nO0jM0C3+YuXA2lZGNYHChc8MyrCvJFQJFlfQ6BPvCeiw5+FaDMxbSonLCcRFZPKJp/lWXhgYkj0swzyhXxNK4EuHqIvN1K+tQ0O3iv/AsSiGk4LYvZONnoPxuDvSFcQq8UdUpcJew8fp98fUiPvPgHKAyO+L/60Vzkqu4hXw9hUKR7cWJQZLV9ChyDHgbsufUNTzdmm58PdxfyD8sb0Fhi30bqDkMwc6vuIXQYXYIgfYVnRcsI8ZmwcYjxg8cQeVZf1hZkd00dKZryQNLb2bz1WRqlWiK1AOV5KEPeonMRrdcwQnEBRqx9ThMDIDdCHWE2moNgX9Lu29fAxYIe//6Duh7KKhp5v80UQ7VD/0ddR8UbUVl4xVW4UneWt9U8AcBpaAgolQEZzIT0q3RzCYbWDwzLzFaawdkttUhKkFiwjDJcESKnKqKDofg5+k4YTJOSO1kagch1NV1JXrfrSfcaUDMG8F27PRTcBF/8idtyoK/uZB9ThefVNaXRCRY/K/zZz7ehTk1GSqe70bQUNaAEdFBYnd+ywk04zhEOrR532pOkyigwWnJdHBJm2VoJlaH9A04Rkw45X+ZhEcpFFBrpzhU/TBs+BgQp/ZZR1WcrWYkGzvojd9ICb8Sm3rD1jGKIuDrtw92SCXLHVCMv5Wm6IbJyVjtfO1ey/FC8aWgnTf7j/rrF5xcXoVpRipjNzX5Pc8VuvLPEPTMynVqU5M40Dr5koIKfSIg6gySM5BKS5t/zKzpo234Ril+u6/qEWjW8BdnXxw/98IhTfAUPlCXWhHyGEOF2hlQA0OG/zY0mmECbWESSFGPFOJzPNOXV/RwcT0jZ8gbecWrVBYrwJfPTHLudSMk+cb17Lwog0aT7oTB0ADU79VLykWKy8iWUGqRcsS0FMHfx4iGcxqht31heDU97MgsQJmlXKdLYP1/I6dXbpgsy/u67kQD9Gc6DjRYf6MdyDVrgymYFM18I6iwSKBIZaf0ZB1AiPK+L9N4eHDVJ1yNvscr5WfwpXg5IhpIJO7E2Rlhbh3xzcWLHo3yj4KLPpwHm2QkjDB3g+Ki/dU2++svSiw4QxzUoXT828rksNjdWXXTOoT6Uc130tGHrmbrfAVnzgUBztr1rkmZmPghFQKId2BR0FkP5MHIsn2tnq7yBXUyyvp+mIJovz5pl0thi5PXl2iiuF6NEbn1rcJ20T5r8gm1lx8gEiHeJss6lg569RDEQPP7gzAjSdS2qGZxEvnyz3QZtpWUXbNsTn+XMObH0/QYw5toa1OjO9wA6j722A5g+vSqeD4H/SOSdR/vl4+m6ZQ8ZjH04RKbGijjsHt0O438qwtwYcmyvBOgEVPUZoJsKm4xIbTANeMWUfW/9en6llQ09Q2GNGYzbPUrXjNPVTzcw7MRMwvfjqL8KSMFxRb41p/8TdxBoLL0Kl8GeA7gzPO76lQg0havYsWjS7Oihv6lY7NdC4fy/ZvTWPeicOus0EdBbVieeskgrHKNAXoP8f/8MT2Kfh5aG69pUbV60nurbRfvbxAQp7QY1LHpt9wdiNBHrmXapt1i9ujL40360NSK5qm9zNaW0EF79jlogPKlKxZI3MMzLpD9a/TxRRQCbc2K+kYySF2kmJWtbyC383WeVDjimpDXpDTPng23MBKrwP+ZU5SynDdFY59LM/DdidhSjcBqa6d0uHGivnMXdui4qFwj1M3fkqCda0ks0pyoNTL9x6ORZZwLL3l6A3sNruF9bVyLi1KSnsE/umc0nRu3EPtaMLzo3ltupslyMhR2aMVjgxE9qykusS4Q9K/wMBItytZsaIg9J9C/SE4w/SSWtq/FT0Tky+uDkGCtR/ESEt0G9ldpIsQTGEO5JXn7MvPOK6elxfmcFxnn5Wegq9zY0lVOaYpuTkeFtSDEJCKDu2AMEjpgXs13GEd7vcDJgl7i3uQaSJWOFaK+l51C6R77PVNOFl/jAHq+Diu+K2PhI6xodlk2ZZNsPYEFyZC+zzkiczrIxx4xx8T0WsCWYZEQMums3oxrEwdQqqbrrPmQSs07U+JfaagHlzslMbmbqiZ/9VXWQjxyfVlGjuM1qxgqeSHyVwvKl6f6DbkpOoYlTnRU9g3C1FENK717sF5/fZbbQMNqsJuaGvpqf57LLRKt/XFPDjHDUB9pbPM1r0TLH5KG74ICd43JrtiaCgNXJxHkYyzKrXQAx/XvilvzBvNLsrDUaoMvlT9ijtcF8dTjTB+U6sP7eAXA0BbuZW+EylZ66meD1auuTfd0MfWNxggoAj3px8RCXRyJkOqxjTgrgUGflH8TjL4mJSsrd9MCQoAqwmN8CrrLff3nlT3YhXUsXXNSI7lqBxXsy2OTNgHlHZmYfLg+67h3KnjOexQhueOod2KqF7EsJNcscbpywzWZmEx66XZre2BVKEbFJnQG0B9GOxbw8T1fGhwRrMuNpprpFRYE7Cir5MNHd7U7JCpO2J9mIKRaeHMdlu8wGONMGAJYjxNKFrJjvc2lFG4yXDmOMxpzYx8jAEFnKRCzlohYowX63r30lQ4KO/+nCK12rJ6Ev2TdjF+bL6tXybdp0eNo+5+MlTDa407XyUrOv6ve6iZTSZvvK9h6M/DFP/JFhv1CmcmlKYYF5oF1chTIAZiG4S+uH/Zn/hw4j9cjKhWCjhViTrooipaq6pyhd1CXpzXXodGrsmlrYX9e47fikDqRsw06oJCUGni5RqsyZWZizGL7GqQlNzsxSRWioTQh0IAEDkhV/Tg3NCJbL6dV7h4idhehjvMc9wki3ApcdPoz3QxY3jHak0bQGkXnRUa+8tsH9zttnNH66piW6P++i1LUHsmpkMLrtOKLDFAW72M8tpJm8I0A7dSD7VO/llyhZN45fvyOyq/h93CJr+tpGqzKWRJZ2n1OekXsEx5jMtdpWGkxn51Xu206pxf9ZmEONv3kabS+LJblwnigtqyvI/nbvWVzBYR4H38BjJgszCdfpqdEJXN+CD/0cWG1uvD4Eq6VRFAt2+kNUgP7ZeKlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
55 |
-
"n": 2,
|
56 |
-
"_shape": [],
|
57 |
-
"dtype": "int64",
|
58 |
-
"_np_random": "RandomState(MT19937)"
|
59 |
-
},
|
60 |
-
"n_envs": 1,
|
61 |
"num_timesteps": 102400,
|
62 |
"_total_timesteps": 100000,
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
-
"seed":
|
65 |
"action_noise": null,
|
66 |
-
"start_time":
|
67 |
"learning_rate": {
|
68 |
":type:": "<class 'function'>",
|
69 |
-
":serialized:": "
|
70 |
-
},
|
71 |
-
"tensorboard_log": "runs/seals/CartPole-v0__ppo__7__1670516892/seals-CartPole-v0",
|
72 |
-
"lr_schedule": {
|
73 |
-
":type:": "<class 'function'>",
|
74 |
-
":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
75 |
},
|
|
|
76 |
"_last_obs": null,
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -83,15 +56,41 @@
|
|
83 |
"use_sde": false,
|
84 |
"sde_sample_freq": -1,
|
85 |
"_current_progress_remaining": -0.02400000000000002,
|
|
|
86 |
"ep_info_buffer": {
|
87 |
":type:": "<class 'collections.deque'>",
|
88 |
-
":serialized:": "
|
89 |
},
|
90 |
"ep_success_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
},
|
94 |
"_n_updates": 250,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"n_steps": 512,
|
96 |
"gamma": 0.9999,
|
97 |
"gae_lambda": 0.9,
|
@@ -102,9 +101,13 @@
|
|
102 |
"n_epochs": 10,
|
103 |
"clip_range": {
|
104 |
":type:": "<class 'function'>",
|
105 |
-
":serialized:": "
|
106 |
},
|
107 |
"clip_range_vf": null,
|
108 |
"normalize_advantage": true,
|
109 |
-
"target_kl": null
|
|
|
|
|
|
|
|
|
110 |
}
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc418e2ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc418e2f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc41867040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc418670d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcc41867160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcc418671f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcc41867280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc41867310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcc418673a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc41867430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc418674c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc41867550>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fcc418cdc90>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVZQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXV1Lg==",
|
26 |
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
27 |
+
"net_arch": {
|
28 |
+
"pi": [
|
29 |
+
64,
|
30 |
+
64
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
64,
|
34 |
+
64
|
35 |
+
]
|
36 |
+
}
|
|
|
|
|
37 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"num_timesteps": 102400,
|
39 |
"_total_timesteps": 100000,
|
40 |
"_num_timesteps_at_start": 0,
|
41 |
+
"seed": 0,
|
42 |
"action_noise": null,
|
43 |
+
"start_time": 1694771152136710495,
|
44 |
"learning_rate": {
|
45 |
":type:": "<class 'function'>",
|
46 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
|
|
|
|
|
|
|
|
47 |
},
|
48 |
+
"tensorboard_log": null,
|
49 |
"_last_obs": null,
|
50 |
"_last_episode_starts": {
|
51 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
56 |
"use_sde": false,
|
57 |
"sde_sample_freq": -1,
|
58 |
"_current_progress_remaining": -0.02400000000000002,
|
59 |
+
"_stats_window_size": 100,
|
60 |
"ep_info_buffer": {
|
61 |
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAKPgtFrl/6XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCj3yup0fYB1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ao92h7E5yVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKPcEmplz2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpPgNwzch11fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTxOtW+49dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKk6vA44p+nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpOSZBsyi51fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTd+ocaOxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKk19v0h/zHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpNGy5Zr591fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTLdvbXYldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6eYMOPNmnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCunPC2tuDV1fZQoaAZHQH9AAAAAAABoB030AWgIR0ArptjTa0x/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6Z0bLlmvnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCumC04R28t1fZQoaAZHQH9AAAAAAABoB030AWgIR0ArpaouPFNtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6VIiC8OC3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCuk5fdAPd51fZQoaAZHQH9AAAAAAABoB030AWgIR0As/5HmRvFWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALP8iwB5ooXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCz+wmmce8x1fZQoaAZHQH9AAAAAAABoB030AWgIR0As/l2eQMhHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALP3zlLeyiXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCz9kWhysCF1fZQoaAZHQH9AAAAAAABoB030AWgIR0As/S88La24dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALPzLW7OE/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5VVNpM6BB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuVOgxrSE2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALlSDh99c8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5UHlfZ26l1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuU7Rv3rUtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALlNSZSeiBXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5S7/XGwRp1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuUox59mYjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6s2FWXC0nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+qxs2vStx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AvqmG/N7jUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6n8KohpxnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+pkf9xZMd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AvqTAWSEDhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6jNyHVPN3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+oam4y44J1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwgK9PDYRNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMIB2B8QZoHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDCAQ4CIUJx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwgBClabF1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMH/boKUmlnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDB/qoqCpWF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Awf3lS0jTsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMH9Hc1wYL3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDEro7muDBd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxK2vjfek6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMSs5sCT2WnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDErBwdbPhR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxKtITXarWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMSqhQFcIJXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDEqcCo0hvB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxKj5sTFl1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdd3W4EwFnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHXQAuIyj51fZQoaAZHQH9AAAAAAABoB030AWgIR0Ax1w2ETQE7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdbayrxRVXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHWpaRp1zR1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ax1nSv1UVBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdZDeCTUzHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHWEZiuuA91fZQoaAZHQH9AAAAAAABoB030AWgIR0AyglwcYIjXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoImLLpzLnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDKB9Dx9XtB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AygcGC7K7qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoGMju8brHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDKBW7voePt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AygSqEOAiFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoD5CWu5jHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMumTC+De11fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLmYjSofkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMy40VJtix3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMuAc1fmcR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLc3l0YCRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMy2dVea8YnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMtbHIZIhB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLTrVvuPWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9lVDKHO8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPZHz6JqIt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az2Oz6ab4KdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9i6QNkOJHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPYhTwUg0V1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az2FRYRujzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9gjUutfX3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPX8XN1QqJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0g0xM36yjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIMVHnU2DXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDSC4qgAZKp1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0gq/ub7TEdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIJ6+nIhhnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDSCSr5qM3t1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0ghl18stkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIHnuAqd6XVlLg=="
|
63 |
},
|
64 |
"ep_success_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
67 |
},
|
68 |
"_n_updates": 250,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
71 |
+
":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAP//f////3//2w9JwP//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAP//f3///39/2w9JQP//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstMy40MDI4MjM1ZSszOCAtMy40MDI4MjM1ZSszOCAtMy4xNDE1OTI3ZSswMCAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbMy40MDI4MjM1ZSszOCAzLjQwMjgyMzVlKzM4IDMuMTQxNTkyN2UrMDAgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
72 |
+
"dtype": "float32",
|
73 |
+
"bounded_below": "[ True True True True]",
|
74 |
+
"bounded_above": "[ True True True True]",
|
75 |
+
"_shape": [
|
76 |
+
4
|
77 |
+
],
|
78 |
+
"low": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
|
79 |
+
"high": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
|
80 |
+
"low_repr": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
|
81 |
+
"high_repr": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
|
82 |
+
"_np_random": null
|
83 |
+
},
|
84 |
+
"action_space": {
|
85 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
86 |
+
":serialized:": "gAWVugEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCmKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
87 |
+
"n": "2",
|
88 |
+
"start": "0",
|
89 |
+
"_shape": [],
|
90 |
+
"dtype": "int64",
|
91 |
+
"_np_random": "Generator(PCG64)"
|
92 |
+
},
|
93 |
+
"n_envs": 1,
|
94 |
"n_steps": 512,
|
95 |
"gamma": 0.9999,
|
96 |
"gae_lambda": 0.9,
|
|
|
101 |
"n_epochs": 10,
|
102 |
"clip_range": {
|
103 |
":type:": "<class 'function'>",
|
104 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
105 |
},
|
106 |
"clip_range_vf": null,
|
107 |
"normalize_advantage": true,
|
108 |
+
"target_kl": null,
|
109 |
+
"lr_schedule": {
|
110 |
+
":type:": "<class 'function'>",
|
111 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
112 |
+
}
|
113 |
}
|
ppo-seals-CartPole-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 82425
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40da409386ebbb12b110342c54781f79f6bb75a7011b5c77349fc23803476222
|
3 |
size 82425
|
ppo-seals-CartPole-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6db5d09a0139e686bcea8d28033d45282a219872cdf9615bd34f323321953549
|
3 |
+
size 40641
|
ppo-seals-CartPole-v0/system_info.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
OS: Linux-5.4.0-
|
2 |
-
Python: 3.8.10
|
3 |
-
Stable-Baselines3:
|
4 |
-
PyTorch:
|
5 |
-
GPU Enabled: False
|
6 |
-
Numpy: 1.
|
7 |
-
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 2.2.0a3
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfb42af0cb0886d40c42ccbae54457ef7c113e14260731dfef78f395def361e0
|
3 |
+
size 52504
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:41:29.721520"}
|
train_eval_metrics.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03f1d3442617ea155b2db3cfa07f3ddc9d43802819794da0b59f1af6f74b70b0
|
3 |
+
size 6345
|