ChristopherMarais commited on
Commit
de0b3ee
·
verified ·
1 Parent(s): b0e2187

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +344 -3
README.md CHANGED
@@ -1,3 +1,344 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ # Evaluation Report for rtdetrx_bb_detect_model
5
+
6
+ **Tasks:** Single-class Object Detection, Feature extraction
7
+
8
+ ## Evaluation Notes
9
+
10
+ This model does not identify individual species but detects a single category of object.
11
+
12
+ The evaluation was performed on a single-class basis using the text prompt: **'bark_beetle'**.
13
+
14
+ ### Mantel Correlation Explanation
15
+
16
+ The Mantel R statistic is calculated by comparing the distances between clustering centroids of different species to their phylogenetic distances. This helps determine if the model's learned feature representations correlate with the evolutionary relationships between species.
17
+
18
+ ## Object Classification Performance
19
+
20
+ **mAP@[.5:.95]:** 0.921
21
+
22
+ ### mAP per IoU Threshold
23
+
24
+ | IoU Threshold | mAP |
25
+ |:----------------|---------:|
26
+ | [email protected] | 0.987815 |
27
+ | [email protected] | 0.985755 |
28
+ | [email protected] | 0.983646 |
29
+ | [email protected] | 0.979705 |
30
+ | [email protected] | 0.972081 |
31
+ | [email protected] | 0.956602 |
32
+ | [email protected] | 0.919432 |
33
+ | [email protected] | 0.873082 |
34
+ | [email protected] | 0.824972 |
35
+ | [email protected] | 0.722574 |
36
+
37
+ ### Average Precision per Class (at last IoU threshold)
38
+
39
+ | Class | AP |
40
+ |:------------|---------:|
41
+ | bark_beetle | 0.722574 |
42
+
43
+ ### Classification Metrics per IoU Threshold
44
+
45
+ #### IoU Threshold: iou_0.50
46
+
47
+ - **Accuracy:** 0.995
48
+ - **Balanced Accuracy:** 0.995
49
+ - **Macro Precision:** 1.000
50
+ - **Macro Recall:** 0.995
51
+ - **Macro F1 Score:** 0.997
52
+ - **Cohen's Kappa:** 0.000
53
+ - **Matthews Corrcoef:** 0.000
54
+
55
+ ##### Confusion Matrix
56
+
57
+ ```
58
+ Predicted Label 0
59
+ True Label
60
+ 0 16395
61
+ ```
62
+
63
+ ##### Classification Report
64
+
65
+ ```
66
+ precision recall f1-score support
67
+ 0 1.0 0.994842 0.997414 16480.0
68
+ micro avg 1.0 0.994842 0.997414 16480.0
69
+ macro avg 1.0 0.994842 0.997414 16480.0
70
+ weighted avg 1.0 0.994842 0.997414 16480.0
71
+ ```
72
+
73
+ #### IoU Threshold: iou_0.55
74
+
75
+ - **Accuracy:** 0.993
76
+ - **Balanced Accuracy:** 0.993
77
+ - **Macro Precision:** 1.000
78
+ - **Macro Recall:** 0.993
79
+ - **Macro F1 Score:** 0.996
80
+ - **Cohen's Kappa:** 0.000
81
+ - **Matthews Corrcoef:** 0.000
82
+
83
+ ##### Confusion Matrix
84
+
85
+ ```
86
+ Predicted Label 0
87
+ True Label
88
+ 0 16360
89
+ ```
90
+
91
+ ##### Classification Report
92
+
93
+ ```
94
+ precision recall f1-score support
95
+ 0 1.0 0.992718 0.996346 16480.0
96
+ micro avg 1.0 0.992718 0.996346 16480.0
97
+ macro avg 1.0 0.992718 0.996346 16480.0
98
+ weighted avg 1.0 0.992718 0.996346 16480.0
99
+ ```
100
+
101
+ #### IoU Threshold: iou_0.60
102
+
103
+ - **Accuracy:** 0.990
104
+ - **Balanced Accuracy:** 0.990
105
+ - **Macro Precision:** 1.000
106
+ - **Macro Recall:** 0.990
107
+ - **Macro F1 Score:** 0.995
108
+ - **Cohen's Kappa:** 0.000
109
+ - **Matthews Corrcoef:** 0.000
110
+
111
+ ##### Confusion Matrix
112
+
113
+ ```
114
+ Predicted Label 0
115
+ True Label
116
+ 0 16323
117
+ ```
118
+
119
+ ##### Classification Report
120
+
121
+ ```
122
+ precision recall f1-score support
123
+ 0 1.0 0.990473 0.995214 16480.0
124
+ micro avg 1.0 0.990473 0.995214 16480.0
125
+ macro avg 1.0 0.990473 0.995214 16480.0
126
+ weighted avg 1.0 0.990473 0.995214 16480.0
127
+ ```
128
+
129
+ #### IoU Threshold: iou_0.65
130
+
131
+ - **Accuracy:** 0.986
132
+ - **Balanced Accuracy:** 0.986
133
+ - **Macro Precision:** 1.000
134
+ - **Macro Recall:** 0.986
135
+ - **Macro F1 Score:** 0.993
136
+ - **Cohen's Kappa:** 0.000
137
+ - **Matthews Corrcoef:** 0.000
138
+
139
+ ##### Confusion Matrix
140
+
141
+ ```
142
+ Predicted Label 0
143
+ True Label
144
+ 0 16255
145
+ ```
146
+
147
+ ##### Classification Report
148
+
149
+ ```
150
+ precision recall f1-score support
151
+ 0 1.0 0.986347 0.993127 16480.0
152
+ micro avg 1.0 0.986347 0.993127 16480.0
153
+ macro avg 1.0 0.986347 0.993127 16480.0
154
+ weighted avg 1.0 0.986347 0.993127 16480.0
155
+ ```
156
+
157
+ #### IoU Threshold: iou_0.70
158
+
159
+ - **Accuracy:** 0.979
160
+ - **Balanced Accuracy:** 0.979
161
+ - **Macro Precision:** 1.000
162
+ - **Macro Recall:** 0.979
163
+ - **Macro F1 Score:** 0.989
164
+ - **Cohen's Kappa:** 0.000
165
+ - **Matthews Corrcoef:** 0.000
166
+
167
+ ##### Confusion Matrix
168
+
169
+ ```
170
+ Predicted Label 0
171
+ True Label
172
+ 0 16136
173
+ ```
174
+
175
+ ##### Classification Report
176
+
177
+ ```
178
+ precision recall f1-score support
179
+ 0 1.0 0.979126 0.989453 16480.0
180
+ micro avg 1.0 0.979126 0.989453 16480.0
181
+ macro avg 1.0 0.979126 0.989453 16480.0
182
+ weighted avg 1.0 0.979126 0.989453 16480.0
183
+ ```
184
+
185
+ #### IoU Threshold: iou_0.75
186
+
187
+ - **Accuracy:** 0.965
188
+ - **Balanced Accuracy:** 0.965
189
+ - **Macro Precision:** 1.000
190
+ - **Macro Recall:** 0.965
191
+ - **Macro F1 Score:** 0.982
192
+ - **Cohen's Kappa:** 0.000
193
+ - **Matthews Corrcoef:** 0.000
194
+
195
+ ##### Confusion Matrix
196
+
197
+ ```
198
+ Predicted Label 0
199
+ True Label
200
+ 0 15902
201
+ ```
202
+
203
+ ##### Classification Report
204
+
205
+ ```
206
+ precision recall f1-score support
207
+ 0 1.0 0.964927 0.982151 16480.0
208
+ micro avg 1.0 0.964927 0.982151 16480.0
209
+ macro avg 1.0 0.964927 0.982151 16480.0
210
+ weighted avg 1.0 0.964927 0.982151 16480.0
211
+ ```
212
+
213
+ #### IoU Threshold: iou_0.80
214
+
215
+ - **Accuracy:** 0.931
216
+ - **Balanced Accuracy:** 0.931
217
+ - **Macro Precision:** 1.000
218
+ - **Macro Recall:** 0.931
219
+ - **Macro F1 Score:** 0.964
220
+ - **Cohen's Kappa:** 0.000
221
+ - **Matthews Corrcoef:** 0.000
222
+
223
+ ##### Confusion Matrix
224
+
225
+ ```
226
+ Predicted Label 0
227
+ True Label
228
+ 0 15338
229
+ ```
230
+
231
+ ##### Classification Report
232
+
233
+ ```
234
+ precision recall f1-score support
235
+ 0 1.0 0.930704 0.964108 16480.0
236
+ micro avg 1.0 0.930704 0.964108 16480.0
237
+ macro avg 1.0 0.930704 0.964108 16480.0
238
+ weighted avg 1.0 0.930704 0.964108 16480.0
239
+ ```
240
+
241
+ #### IoU Threshold: iou_0.85
242
+
243
+ - **Accuracy:** 0.888
244
+ - **Balanced Accuracy:** 0.888
245
+ - **Macro Precision:** 1.000
246
+ - **Macro Recall:** 0.888
247
+ - **Macro F1 Score:** 0.941
248
+ - **Cohen's Kappa:** 0.000
249
+ - **Matthews Corrcoef:** 0.000
250
+
251
+ ##### Confusion Matrix
252
+
253
+ ```
254
+ Predicted Label 0
255
+ True Label
256
+ 0 14636
257
+ ```
258
+
259
+ ##### Classification Report
260
+
261
+ ```
262
+ precision recall f1-score support
263
+ 0 1.0 0.888107 0.940738 16480.0
264
+ micro avg 1.0 0.888107 0.940738 16480.0
265
+ macro avg 1.0 0.888107 0.940738 16480.0
266
+ weighted avg 1.0 0.888107 0.940738 16480.0
267
+ ```
268
+
269
+ #### IoU Threshold: iou_0.90
270
+
271
+ - **Accuracy:** 0.845
272
+ - **Balanced Accuracy:** 0.845
273
+ - **Macro Precision:** 1.000
274
+ - **Macro Recall:** 0.845
275
+ - **Macro F1 Score:** 0.916
276
+ - **Cohen's Kappa:** 0.000
277
+ - **Matthews Corrcoef:** 0.000
278
+
279
+ ##### Confusion Matrix
280
+
281
+ ```
282
+ Predicted Label 0
283
+ True Label
284
+ 0 13919
285
+ ```
286
+
287
+ ##### Classification Report
288
+
289
+ ```
290
+ precision recall f1-score support
291
+ 0 1.0 0.8446 0.915754 16480.0
292
+ micro avg 1.0 0.8446 0.915754 16480.0
293
+ macro avg 1.0 0.8446 0.915754 16480.0
294
+ weighted avg 1.0 0.8446 0.915754 16480.0
295
+ ```
296
+
297
+ #### IoU Threshold: iou_0.95
298
+
299
+ - **Accuracy:** 0.758
300
+ - **Balanced Accuracy:** 0.758
301
+ - **Macro Precision:** 1.000
302
+ - **Macro Recall:** 0.758
303
+ - **Macro F1 Score:** 0.862
304
+ - **Cohen's Kappa:** 0.000
305
+ - **Matthews Corrcoef:** 0.000
306
+
307
+ ##### Confusion Matrix
308
+
309
+ ```
310
+ Predicted Label 0
311
+ True Label
312
+ 0 12490
313
+ ```
314
+
315
+ ##### Classification Report
316
+
317
+ ```
318
+ precision recall f1-score support
319
+ 0 1.0 0.757888 0.862271 16480.0
320
+ micro avg 1.0 0.757888 0.862271 16480.0
321
+ macro avg 1.0 0.757888 0.862271 16480.0
322
+ weighted avg 1.0 0.757888 0.862271 16480.0
323
+ ```
324
+
325
+ ## Embedding Quality
326
+
327
+ ### Internal Cluster Validation
328
+
329
+ | Silhouette_Score | Davies-Bouldin_Index | Calinski-Harabasz_Index |
330
+ |-------------------:|-----------------------:|--------------------------:|
331
+ | 0.291593 | 0.561635 | 3330.14 |
332
+
333
+ ### External Cluster Validation
334
+
335
+ | ARI | NMI | Cluster_Purity |
336
+ |---------:|---------:|-----------------:|
337
+ | 0.101185 | 0.317547 | 0.24571 |
338
+
339
+ ### Mantel Correlation
340
+
341
+ | r | p_value | n_items |
342
+ |-----------:|----------:|----------:|
343
+ | -0.0955094 | 0.527 | 32 |
344
+