Added transformers usage example
Browse files
README.md
CHANGED
@@ -24,4 +24,49 @@ Model checkpoint is saved in [compressed_tensors](https://github.com/neuralmagic
|
|
24 |
* To use the model in `transformers` update the package to stable release of Mistral-3
|
25 |
|
26 |
`pip install git+https://github.com/huggingface/[email protected]`
|
27 |
-
* To use the model in `vLLM` update the package to version `vllm>=0.8.0`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
* To use the model in `transformers` update the package to stable release of Mistral-3
|
25 |
|
26 |
`pip install git+https://github.com/huggingface/[email protected]`
|
27 |
+
* To use the model in `vLLM` update the package to version `vllm>=0.8.0`.
|
28 |
+
|
29 |
+
And example of inference via transformers is provided below:
|
30 |
+
|
31 |
+
# pip install accelerate
|
32 |
+
|
33 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
34 |
+
from PIL import Image
|
35 |
+
import requests
|
36 |
+
import torch
|
37 |
+
|
38 |
+
model_id = "ISTA-DASLab/Mistral-Small-3.1-24B-Instruct-2503-GPTQ-4b-128g"
|
39 |
+
|
40 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
41 |
+
model_id, device_map="auto"
|
42 |
+
).eval()
|
43 |
+
|
44 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
45 |
+
|
46 |
+
messages = [
|
47 |
+
{
|
48 |
+
"role": "system",
|
49 |
+
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"role": "user",
|
53 |
+
"content": [
|
54 |
+
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
|
55 |
+
{"type": "text", "text": "Describe this image in detail."}
|
56 |
+
]
|
57 |
+
}
|
58 |
+
]
|
59 |
+
|
60 |
+
inputs = processor.apply_chat_template(
|
61 |
+
messages, add_generation_prompt=True, tokenize=True,
|
62 |
+
return_dict=True, return_tensors="pt"
|
63 |
+
).to(model.device, dtype=torch.bfloat16)
|
64 |
+
|
65 |
+
input_len = inputs["input_ids"].shape[-1]
|
66 |
+
|
67 |
+
with torch.inference_mode():
|
68 |
+
generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
|
69 |
+
generation = generation[0][input_len:]
|
70 |
+
|
71 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
72 |
+
print(decoded)
|