--- license: apache-2.0 language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct - meta-llama/Llama-2-7b pipeline_tag: question-answering tags: - medical - biology - genetics - bioinformatics --- **GP-GTP** is an open-weight genetic-phenotype knowledge language model. For "medical-genetic-information". **Arvix version**: [arXiv:2409.09825](https://doi.org/10.48550/arXiv.2409.09825) ### Usage ```python from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments from peft import AutoPeftModelForCausalLM from peft import PeftModel from peft import LoraConfig, get_peft_model #init parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] # specific the model to load # For GP-GPT small: script_args.model_name = "meta-llama/Llama-2-7b" script_args.peft_model_id = "./small/" # For GP-GPT base: script_args.model_name = "meta-llama/Meta-Llama-3.1-8B" script_args.peft_model_id = "./base/" # Cache model model = AutoModelForCausalLM.from_pretrained( script_args.model_name, #quantization_config=quantization_config, # activate when using quantization setting device_map=device_map, torch_dtype=torch_dtype, use_auth_token=False, ) #load PEFT adapter if script_args.peft_model_id is not None: peft_model_id = script_args.peft_model_id model = PeftModel.from_pretrained(model, peft_model_id) model = model.merge_and_unload()