--- license: mit language: - en metrics: - precision - recall - f1 - accuracy pipeline_tag: tabular-classification tags: - classification - mushrooms --- # Model Card for Infinitode/MCM-OPEN-ARC Repository: https://github.com/Infinitode/OPEN-ARC/ ## Model Description OPEN-ARC-MC is a simple RandomForestClassifier model developed as part of Infinitode's OPEN-ARC initiative. It was designed to determine whether a mushroom is edible or inedible, based on its appearance, habitat, and several other factors. **Architecture**: - **RandomForestClassifier**: `random_state=42`, `class_weight="balanced"`. - **Framework**: SKLearn - **Training Setup**: Trained using the default params. ## Uses - Identifying potentially poisonous mushrooms to avoid their consumption. - Advancing knowledge and research in mushroom edibility and toxicology. ## Limitations - May provide inaccurate assessments regarding mushroom edibility; caution is advised when considering these outputs. Always consult expert human guidance. ### Disclaimer This model is intended solely for educational purposes and must not be utilized for real-life mushroom classification or any decision-making processes regarding mushroom consumption. Although the model demonstrates strong performance on the provided dataset, it has not undergone comprehensive validation for real-world applications and may fail to reliably identify poisonous mushrooms under all circumstances. Always seek advice from an expert or rely on trusted resources when identifying mushrooms. ## Training Data - Dataset: Mushroom Classification dataset from Kaggle. - Source URL: https://www.kaggle.com/datasets/uciml/mushroom-classification - Content: Mushroom appearance, and other factors, along with the edibility of the mushroom. - Size: 8124 entries of mushroom features and target values. - Preprocessing: Mapped all string values to numeric values. ## Training Procedure - Metrics: accuracy (CV), precision, recall, F1 - Train/Testing Split: 80% train, 20% testing. ## Evaluation Results | Metric | Value | | ------ | ----- | | Testing Accuracy (CV 5-fold) | 91.0% | | Testing Weighted Average Precision | 100% | | Testing Weighted Average Recall | 100% | | Testing Weighted Average F1 | 100% | ## How to Use ```python feature_options = { 'cap-shape': {'b': 'bell', 'c': 'conical', 'x': 'convex', 'f': 'flat', 'k': 'knobbed', 's': 'sunken'}, 'cap-surface': {'f': 'fibrous', 'g': 'grooves', 'y': 'scaly', 's': 'smooth'}, 'cap-color': {'n': 'brown', 'b': 'buff', 'c': 'cinnamon', 'g': 'gray', 'r': 'green', 'p': 'pink', 'u': 'purple', 'e': 'red', 'w': 'white', 'y': 'yellow'}, 'bruises': {'t': 'bruises', 'f': 'no'}, 'odor': {'a': 'almond', 'l': 'anise', 'c': 'creosote', 'y': 'fishy', 'f': 'foul', 'm': 'musty', 'n': 'none', 'p': 'pungent', 's': 'spicy'}, 'gill-attachment': {'a': 'attached', 'd': 'descending', 'f': 'free', 'n': 'notched'}, 'gill-spacing': {'c': 'close', 'w': 'crowded', 'd': 'distant'}, 'gill-size': {'b': 'broad', 'n': 'narrow'}, 'gill-color': {'k': 'black', 'n': 'brown', 'b': 'buff', 'h': 'chocolate', 'g': 'gray', 'r': 'green', 'o': 'orange', 'p': 'pink', 'u': 'purple', 'e': 'red', 'w': 'white', 'y': 'yellow'}, 'stalk-shape': {'e': 'enlarging', 't': 'tapering'}, 'stalk-root': {'b': 'bulbous', 'c': 'club', 'u': 'cup', 'e': 'equal', 'z': 'rhizomorphs', 'r': 'rooted', '?': 'missing'}, 'stalk-surface-above-ring': {'f': 'fibrous', 'y': 'scaly', 'k': 'silky', 's': 'smooth'}, 'stalk-surface-below-ring': {'f': 'fibrous', 'y': 'scaly', 'k': 'silky', 's': 'smooth'}, 'stalk-color-above-ring': {'n': 'brown', 'b': 'buff', 'c': 'cinnamon', 'g': 'gray', 'o': 'orange', 'p': 'pink', 'e': 'red', 'w': 'white', 'y': 'yellow'}, 'stalk-color-below-ring': {'n': 'brown', 'b': 'buff', 'c': 'cinnamon', 'g': 'gray', 'o': 'orange', 'p': 'pink', 'e': 'red', 'w': 'white', 'y': 'yellow'}, 'veil-type': {'p': 'partial', 'u': 'universal'}, 'veil-color': {'n': 'brown', 'o': 'orange', 'w': 'white', 'y': 'yellow'}, 'ring-number': {'n': 'none', 'o': 'one', 't': 'two'}, 'ring-type': {'c': 'cobwebby', 'e': 'evanescent', 'f': 'flaring', 'l': 'large', 'n': 'none', 'p': 'pendant', 's': 'sheathing', 'z': 'zone'}, 'spore-print-color': {'k': 'black', 'n': 'brown', 'b': 'buff', 'h': 'chocolate', 'r': 'green', 'o': 'orange', 'u': 'purple', 'w': 'white', 'y': 'yellow'}, 'population': {'a': 'abundant', 'c': 'clustered', 'n': 'numerous', 's': 'scattered', 'v': 'several', 'y': 'solitary'}, 'habitat': {'g': 'grasses', 'l': 'leaves', 'm': 'meadows', 'p': 'paths', 'u': 'urban', 'w': 'waste', 'd': 'woods'} } def get_user_input(): """ Collects user input for each mushroom feature. Returns: dict: A dictionary containing the user's input for each feature. """ user_input = {} print("Please provide the following mushroom characteristics:") for feature, options in feature_options.items(): print(f"\n{feature.replace('-', ' ').capitalize()}:") for key, value in options.items(): print(f" {key}: {value}") while True: choice = input(f"Enter the corresponding letter for {feature}: ").strip().lower() if choice in options: user_input[feature] = choice break else: print("Invalid input. Please enter one of the listed letters.") return user_input user_input = get_user_input() def predict_mushroom(features): """ Predict whether a mushroom is edible or poisonous based on its features. Parameters: features (dict): A dictionary of mushroom features with feature names as keys and corresponding categorical values. Returns: str: 'Edible' or 'Poisonous' """ # Load the trained model and mappings model = joblib.load('mushroom_classifier.pkl') mappings = joblib.load('mappings.pkl') # Initialize a dictionary to hold the numerical features numerical_features = {} # Map each feature to its numerical value for feature, value in features.items(): if feature in mappings: if value in mappings[feature]: numerical_features[feature] = mappings[feature][value] else: raise ValueError(f"Invalid value '{value}' for feature '{feature}'.") else: raise ValueError(f"Feature '{feature}' is not recognized.") # Convert the numerical features into a DataFrame input_df = pd.DataFrame([numerical_features]) # Predict using the trained model prediction = model.predict(input_df) # Interpret the prediction if prediction[0] == 0: return 'Edible' else: return 'Poisonous' # Predict edibility try: result = predict_mushroom(user_input) print(f"\nThe mushroom is likely: {result}") except ValueError as e: print(f"Error: {e}") ``` ## Contact For questions or issues, open a GitHub issue or reach out at https://infinitode.netlify.app/forms/contact.