File size: 2,946 Bytes
8b406b7 f2f8409 8b406b7 f2f8409 2e8bda0 495ac6e 8b406b7 f2f8409 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8774509803921569
- name: F1
type: f1
value: 0.9137931034482758
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: train
metrics:
- name: Accuracy
type: accuracy
value: 0.979825517993457
verified: true
- name: Precision
type: precision
value: 0.9842615012106537
verified: true
- name: Recall
type: recall
value: 0.9858528698464026
verified: true
- name: AUC
type: auc
value: 0.9958293217637636
verified: true
- name: F1
type: f1
value: 0.9850565428109854
verified: true
- name: loss
type: loss
value: 0.08004990220069885
verified: true
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.8774509803921569
verified: true
- name: Precision
type: precision
value: 0.8803986710963455
verified: true
- name: Recall
type: recall
value: 0.9498207885304659
verified: true
- name: AUC
type: auc
value: 0.9474174099080325
verified: true
- name: F1
type: f1
value: 0.9137931034482758
verified: true
- name: loss
type: loss
value: 0.5562044978141785
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-mrpc
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5565
- Accuracy: 0.8775
- F1: 0.9138
- Combined Score: 0.8956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6
|