IsabellaTian commited on
Commit
976c1a3
·
1 Parent(s): b56109b

Create HW3

Browse files
Files changed (1) hide show
  1. HW3 +37 -0
HW3 ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+
4
+ def expected_value(prob_storm, sensitivity, specificity, prob_mold, prob_high_sugar, prob_low_sugar, prob_regular_sugar):
5
+ payout_matrix = np.matrix([6000*5+2000*10+2000*15,
6
+ 5000*5+1000*10+2000*120,
7
+ 5000*5+1000*10,
8
+ 4000*5+2500*10+2000*15+1000*30+500*40,
9
+ 6000*5+2000*10+2000*15,
10
+ 5000*5+1000*10+2500*15+1500*30])
11
+ payout_matrix = payout_matrix * 12
12
+
13
+ def s_branch(payout_matrix,prob_mold):
14
+ return(prob_mold * payout_matrix[0,1] + (1-prob_mold) * payout_matrix[0,2])
15
+
16
+ def ns_branch(payout_matrix,prob_high_sugar,prob_low_sugar,prob_regular_sugar):
17
+ return(prob_high_sugar * payout_matrix[0,3] + prob_low_sugar*payout_matrix[0,4] + prob_regular_sugar*payout_matrix[0,5])
18
+
19
+ P_DS = sensitivity * (prob_storm) + (1-sensitivity) * (1-prob_storm)
20
+ P_DNS = specificity * (1-prob_storm) + (1-specificity) * prob_storm
21
+ P_S_DS = (sensitivity * prob_storm)/P_DS
22
+ P_NS_DS = 1 - P_S_DS
23
+
24
+ E_val_top = []
25
+ E_val_top.append(payout_matrix[0,0])
26
+ E_val_top.append(s_branch(payout_matrix,prob_mold) * P_S_DS + P_NS_DS * ns_branch(payout_matrix,prob_high_sugar,prob_low_sugar,prob_regular_sugar))
27
+
28
+ P_NS_DNS = (specificity * (1-prob_storm))/P_DNS
29
+ P_S_DNS = 1-P_NS_DNS
30
+
31
+ E_val_bot = []
32
+ E_val_bot.append(payout_matrix[0,0])
33
+ E_val_bot.append(s_branch(payout_matrix,prob_mold) * P_S_DNS + P_NS_DNS*ns_branch(payout_matrix,prob_high_sugar,prob_low_sugar,prob_regular_sugar))
34
+
35
+ result = np.max(E_val_top) * P_DS + np.max(E_val_bot)* (1-P_DS)
36
+
37
+ return (result - payout_matrix[0,0])