Commit
·
976c1a3
1
Parent(s):
b56109b
Create HW3
Browse files
HW3
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
def expected_value(prob_storm, sensitivity, specificity, prob_mold, prob_high_sugar, prob_low_sugar, prob_regular_sugar):
|
5 |
+
payout_matrix = np.matrix([6000*5+2000*10+2000*15,
|
6 |
+
5000*5+1000*10+2000*120,
|
7 |
+
5000*5+1000*10,
|
8 |
+
4000*5+2500*10+2000*15+1000*30+500*40,
|
9 |
+
6000*5+2000*10+2000*15,
|
10 |
+
5000*5+1000*10+2500*15+1500*30])
|
11 |
+
payout_matrix = payout_matrix * 12
|
12 |
+
|
13 |
+
def s_branch(payout_matrix,prob_mold):
|
14 |
+
return(prob_mold * payout_matrix[0,1] + (1-prob_mold) * payout_matrix[0,2])
|
15 |
+
|
16 |
+
def ns_branch(payout_matrix,prob_high_sugar,prob_low_sugar,prob_regular_sugar):
|
17 |
+
return(prob_high_sugar * payout_matrix[0,3] + prob_low_sugar*payout_matrix[0,4] + prob_regular_sugar*payout_matrix[0,5])
|
18 |
+
|
19 |
+
P_DS = sensitivity * (prob_storm) + (1-sensitivity) * (1-prob_storm)
|
20 |
+
P_DNS = specificity * (1-prob_storm) + (1-specificity) * prob_storm
|
21 |
+
P_S_DS = (sensitivity * prob_storm)/P_DS
|
22 |
+
P_NS_DS = 1 - P_S_DS
|
23 |
+
|
24 |
+
E_val_top = []
|
25 |
+
E_val_top.append(payout_matrix[0,0])
|
26 |
+
E_val_top.append(s_branch(payout_matrix,prob_mold) * P_S_DS + P_NS_DS * ns_branch(payout_matrix,prob_high_sugar,prob_low_sugar,prob_regular_sugar))
|
27 |
+
|
28 |
+
P_NS_DNS = (specificity * (1-prob_storm))/P_DNS
|
29 |
+
P_S_DNS = 1-P_NS_DNS
|
30 |
+
|
31 |
+
E_val_bot = []
|
32 |
+
E_val_bot.append(payout_matrix[0,0])
|
33 |
+
E_val_bot.append(s_branch(payout_matrix,prob_mold) * P_S_DNS + P_NS_DNS*ns_branch(payout_matrix,prob_high_sugar,prob_low_sugar,prob_regular_sugar))
|
34 |
+
|
35 |
+
result = np.max(E_val_top) * P_DS + np.max(E_val_bot)* (1-P_DS)
|
36 |
+
|
37 |
+
return (result - payout_matrix[0,0])
|