João Raposo commited on
Commit
f6f3fcf
·
verified ·
1 Parent(s): d69e2a4

Upload DarkDummo PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.39 +/- 20.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e0143d916c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e0143d91760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e0143d91800>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e0143d918a0>", "_build": "<function ActorCriticPolicy._build at 0x7e0143d91940>", "forward": "<function ActorCriticPolicy.forward at 0x7e0143d919e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e0143d91a80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e0143d91b20>", "_predict": "<function ActorCriticPolicy._predict at 0x7e0143d91bc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e0143d91c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e0143d91d00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e0143d91da0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e01441ddd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1741473333135916256, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPMJ8j0G1NE+H9UKvk2hmL6fT6S8sujNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCFE+C9RJqMAWyUTSUBjAF0lEdAmlCJ/kNnXnV9lChoBkdAcBLrVvuPWGgHTUgBaAhHQJpSSm/Firl1fZQoaAZHQG/fjYywfQtoB00cAWgIR0CaU9YekpI+dX2UKGgGR0BxHoYtQKrraAdNMQFoCEdAmlWGLP2PDHV9lChoBkdAcUuqzZ6D5GgHTS4BaAhHQJpXJ2ovSMN1fZQoaAZHQHJkVNL127poB00XAWgIR0CaWKn8KohqdX2UKGgGR0Bu4ww482aVaAdNEwFoCEdAmlxqYAsCk3V9lChoBkdAchizEJjUeGgHTRYBaAhHQJpd7XmNiph1fZQoaAZHQHH7UAcT8HhoB00oAWgIR0CaX41HvttzdX2UKGgGR0BtF82eg+QmaAdNGwFoCEdAmmEUQ5FPSHV9lChoBkdAcloasZHd42gHTRwBaAhHQJpimjBVMmF1fZQoaAZHQG9ShtLteD5oB00xAWgIR0CaZE9ECvHMdX2UKGgGR0BwtBwuM+/yaAdNLAFoCEdAmmX2OIZZS3V9lChoBkdAb/3q20AtF2gHTQoBaAhHQJppvGCI1tR1fZQoaAZHQHHEwHu7YkFoB00TAWgIR0Caa6AYpDu0dX2UKGgGR0Bxc4QBgeA/aAdNFAFoCEdAmm1+h0yP/HV9lChoBkdAbq99x6v7nGgHTRsBaAhHQJpvcv38GcF1fZQoaAZHQHHV4gieNDNoB00WAWgIR0CacaZpi7TVdX2UKGgGR0BvV2J53TuwaAdNJAFoCEdAmnNeEug6EXV9lChoBkdAcszT1CgK4WgHS/NoCEdAmnSxIOH313V9lChoBkdAcBNHh0hePmgHTRQBaAhHQJp4hQm/nGN1fZQoaAZHQG4gobn5i3JoB01aAWgIR0Caemg6U7jldX2UKGgGR0BtUfRTjvNNaAdNGAFoCEdAmnvzBEa2nnV9lChoBkdAcjEtXPqs2mgHTSkBaAhHQJp9jEQ5FPV1fZQoaAZHQG7x+vQnhKloB00cAWgIR0CafwmwaBI4dX2UKGgGR0Bx7BKf4AS4aAdNDgFoCEdAmoCBbOeJ53V9lChoBkdAcC3njyWiUWgHTQsBaAhHQJqB6IZZSvV1fZQoaAZHQHA87S/j81poB00tAWgIR0Cahd7kGRmsdX2UKGgGR0BwdIu/UONHaAdL/GgIR0CahzlDneSCdX2UKGgGR0BvYm5SWJJoaAdL+2gIR0CaiKBgNPP+dX2UKGgGR0Bw3Z6mfoRqaAdNJAFoCEdAmoorf1pTM3V9lChoBkdAcCs0TURWcWgHTWMBaAhHQJqMFMnJDE51fZQoaAZHQHEib+PzWf9oB00DAWgIR0CajX9du5z6dX2UKGgGR0BtcT0Yj0L/aAdNQQFoCEdAmo9bdvbXYnV9lChoBkdAcuzK64Ds+mgHTRMBaAhHQJqTMKKHfuV1fZQoaAZHQG/B/ffoA4poB00oAWgIR0CalNU5+6RRdX2UKGgGR0BwdvpxFRYSaAdL/WgIR0CaljBPbfxddX2UKGgGR0Byi8auOjqOaAdNKAFoCEdAmpfKlxffGnV9lChoBkdAbgRdLQHAymgHTT8BaAhHQJqZlCMPz4F1fZQoaAZHQHEzpv99+gFoB00SAWgIR0Cam2LYf4h2dX2UKGgGR0Bi7EWGh24eaAdN6ANoCEdAmqTqAnUlRnV9lChoBkdAcovDVH4GlmgHS+loCEdAmqYxAB1cMXV9lChoBkdAcJ4Mnqmj02gHS/hoCEdAmqd/5gw483V9lChoBkdAcONzLOiWV2gHS/poCEdAmqjWCNCJGnV9lChoBkdAcShhpg1FY2gHTaICaAhHQJqseuHN5dJ1fZQoaAZHQHC9WNipeeFoB00XAWgIR0CasD9lmOENdX2UKGgGR0BwA7i0fHPvaAdNUgFoCEdAmrIyKFZgX3V9lChoBkdAbMvSXMQmNWgHTSABaAhHQJqzyk43m3h1fZQoaAZHQG9dVjqfOD9oB00+AmgIR0CatuhB7eEadX2UKGgGR0BvuMK/mDDkaAdNVAFoCEdAmrjAiA2AG3V9lChoBkdAcVWjx0+1SmgHTS8BaAhHQJq6e3UhFE11fZQoaAZHQHF8MeXAuZloB03RAWgIR0Cav0d5prULdX2UKGgGR0BlDmPRzBAOaAdN6ANoCEdAmsTOARTS9nV9lChoBkdAbZNw5vLowGgHTQIBaAhHQJrGMckt29t1fZQoaAZHQG5EmNrCWNZoB00RAWgIR0Cax6Bltj0+dX2UKGgGR0BxdVyNn5BUaAdN2wFoCEdAms08ZDRc/3V9lChoBkdAb2TP0I1LrWgHTRUBaAhHQJrPQwmE5AB1fZQoaAZHQG/p6LXL/0doB00GAWgIR0Ca0UwTdtVJdX2UKGgGR0Bh9whpxm03aAdN6ANoCEdAmtcHpfQa73V9lChoBkdAcNz6TGHYYmgHTS4BaAhHQJra59QXQ+l1fZQoaAZHQG3HqPXCj1xoB00AAWgIR0Ca3Ei83++/dX2UKGgGR0BtALhJiAlOaAdNAgFoCEdAmt2lenhsInV9lChoBkdAbsoRdyDIzWgHTe8BaAhHQJrgV0nw5Np1fZQoaAZHQHGhp5VwPy1oB003AWgIR0Ca4gk3S8aodX2UKGgGR0BxxfThHbypaAdNNAFoCEdAmuPNVmz0H3V9lChoBkdAbk8wyIpH7WgHS/poCEdAmuUlhb4agnV9lChoBkdAZPXaPCEYfmgHTegDaAhHQJrs8psoDxN1fZQoaAZHQGejxEF4cFRoB03oA2gIR0Ca8l8x9G7SdX2UKGgGR0BuGw1WKdhBaAdNFAFoCEdAmvYhIFvAGnV9lChoBkdAYpVXf642CWgHTegDaAhHQJr8I9TxXn11fZQoaAZHQHH7w5myxA1oB0v2aAhHQJr9ziYLLIR1fZQoaAZHQG7zdtdiUgVoB00KAWgIR0Ca/7VI7NjcdX2UKGgGR0Bw5mfqX4TLaAdNKAFoCEdAmwIHaBZpz3V9lChoBkdAO+sHbAUL2GgHS+hoCEdAmwWnqiXY2HV9lChoBkdAbp+ZZ0Syt2gHTREBaAhHQJsHHzRQaaV1fZQoaAZHQHCLPJzT4L1oB0vvaAhHQJsIkbJfYz11fZQoaAZHQHEh9O2y9mJoB00tAWgIR0CbCivCdjG2dX2UKGgGR0BxOcDvE0iyaAdNHQFoCEdAmwusRHww03V9lChoBkdAcTssasIVumgHTS0BaAhHQJsNVKtga3t1fZQoaAZHQG42OAy2x6hoB0vtaAhHQJsOnjxTbWV1fZQoaAZHQEnnOIqLCN1oB0vYaAhHQJsPvTBqKxd1fZQoaAZHQE6ztShrWRRoB0u8aAhHQJsTArPMSsd1fZQoaAZHQHCDLHuJDVpoB01CAWgIR0CbFMXr+o9+dX2UKGgGR0BwU7AnDziCaAdNIgJoCEdAmxfEWZZ0S3V9lChoBkdAbnlvze40/GgHTQYBaAhHQJsZO2KEWZZ1fZQoaAZHQHD5NnPE87poB01KAmgIR0CbHF/8EV32dX2UKGgGR0BxvdjiGWUsaAdNKQFoCEdAmyBGszVMEnV9lChoBkdAcuZJeE7GN2gHTSkBaAhHQJsh55AyEct1fZQoaAZHQHHnbV8Ti85oB00SAWgIR0CbI1wmE5AAdX2UKGgGR0ByIwm7aqS6aAdNFwFoCEdAmyTiHIp6QnV9lChoBkdAcSov1UVBU2gHS/RoCEdAmyYnN1QqJHV9lChoBkdAcA/zH0btJGgHTY0BaAhHQJsoQSQHRkV1fZQoaAZHQHCj4G2TgVJoB00mAWgIR0CbKdp0fYBedX2UKGgGR0Bt73bAUL2IaAdNLgFoCEdAmy7M6q8143V9lChoBkdAcLtwEQoTf2gHTRwBaAhHQJsxD3RG+bp1fZQoaAZHQD0OR2bG3nZoB0vsaAhHQJsyuwxFiKB1fZQoaAZHQHI6ZlOGj9JoB006AWgIR0CbNHj1PFefdX2UKGgGR0Ar0jN6gM+eaAdL12gIR0CbNaxzaK1pdX2UKGgGR0BxtXAGjbi7aAdNDAFoCEdAmzci9ytFKHV9lChoBkdAcjEXQMQVbmgHTbkBaAhHQJs5qdrftQd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQH53JAY29lGmAExZq6pP3YIwDaW5jlIoQpWYL18eu40IKN5GmudRvLnWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylIoFCZ+O3wB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0bd9af96b36243dafb6ebe2a875abb3b5c8bedf00be21499d95559c4f229d3
3
+ size 147735
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e0143d916c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e0143d91760>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e0143d91800>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e0143d918a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e0143d91940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e0143d919e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e0143d91a80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e0143d91b20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e0143d91bc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e0143d91c60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e0143d91d00>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e0143d91da0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e01441ddd40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1001472,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1741473333135916256,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPMJ8j0G1NE+H9UKvk2hmL6fT6S8sujNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0014719999999999178,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCFE+C9RJqMAWyUTSUBjAF0lEdAmlCJ/kNnXnV9lChoBkdAcBLrVvuPWGgHTUgBaAhHQJpSSm/Firl1fZQoaAZHQG/fjYywfQtoB00cAWgIR0CaU9YekpI+dX2UKGgGR0BxHoYtQKrraAdNMQFoCEdAmlWGLP2PDHV9lChoBkdAcUuqzZ6D5GgHTS4BaAhHQJpXJ2ovSMN1fZQoaAZHQHJkVNL127poB00XAWgIR0CaWKn8KohqdX2UKGgGR0Bu4ww482aVaAdNEwFoCEdAmlxqYAsCk3V9lChoBkdAchizEJjUeGgHTRYBaAhHQJpd7XmNiph1fZQoaAZHQHH7UAcT8HhoB00oAWgIR0CaX41HvttzdX2UKGgGR0BtF82eg+QmaAdNGwFoCEdAmmEUQ5FPSHV9lChoBkdAcloasZHd42gHTRwBaAhHQJpimjBVMmF1fZQoaAZHQG9ShtLteD5oB00xAWgIR0CaZE9ECvHMdX2UKGgGR0BwtBwuM+/yaAdNLAFoCEdAmmX2OIZZS3V9lChoBkdAb/3q20AtF2gHTQoBaAhHQJppvGCI1tR1fZQoaAZHQHHEwHu7YkFoB00TAWgIR0Caa6AYpDu0dX2UKGgGR0Bxc4QBgeA/aAdNFAFoCEdAmm1+h0yP/HV9lChoBkdAbq99x6v7nGgHTRsBaAhHQJpvcv38GcF1fZQoaAZHQHHV4gieNDNoB00WAWgIR0CacaZpi7TVdX2UKGgGR0BvV2J53TuwaAdNJAFoCEdAmnNeEug6EXV9lChoBkdAcszT1CgK4WgHS/NoCEdAmnSxIOH313V9lChoBkdAcBNHh0hePmgHTRQBaAhHQJp4hQm/nGN1fZQoaAZHQG4gobn5i3JoB01aAWgIR0Caemg6U7jldX2UKGgGR0BtUfRTjvNNaAdNGAFoCEdAmnvzBEa2nnV9lChoBkdAcjEtXPqs2mgHTSkBaAhHQJp9jEQ5FPV1fZQoaAZHQG7x+vQnhKloB00cAWgIR0CafwmwaBI4dX2UKGgGR0Bx7BKf4AS4aAdNDgFoCEdAmoCBbOeJ53V9lChoBkdAcC3njyWiUWgHTQsBaAhHQJqB6IZZSvV1fZQoaAZHQHA87S/j81poB00tAWgIR0Cahd7kGRmsdX2UKGgGR0BwdIu/UONHaAdL/GgIR0CahzlDneSCdX2UKGgGR0BvYm5SWJJoaAdL+2gIR0CaiKBgNPP+dX2UKGgGR0Bw3Z6mfoRqaAdNJAFoCEdAmoorf1pTM3V9lChoBkdAcCs0TURWcWgHTWMBaAhHQJqMFMnJDE51fZQoaAZHQHEib+PzWf9oB00DAWgIR0CajX9du5z6dX2UKGgGR0BtcT0Yj0L/aAdNQQFoCEdAmo9bdvbXYnV9lChoBkdAcuzK64Ds+mgHTRMBaAhHQJqTMKKHfuV1fZQoaAZHQG/B/ffoA4poB00oAWgIR0CalNU5+6RRdX2UKGgGR0BwdvpxFRYSaAdL/WgIR0CaljBPbfxddX2UKGgGR0Byi8auOjqOaAdNKAFoCEdAmpfKlxffGnV9lChoBkdAbgRdLQHAymgHTT8BaAhHQJqZlCMPz4F1fZQoaAZHQHEzpv99+gFoB00SAWgIR0Cam2LYf4h2dX2UKGgGR0Bi7EWGh24eaAdN6ANoCEdAmqTqAnUlRnV9lChoBkdAcovDVH4GlmgHS+loCEdAmqYxAB1cMXV9lChoBkdAcJ4Mnqmj02gHS/hoCEdAmqd/5gw483V9lChoBkdAcONzLOiWV2gHS/poCEdAmqjWCNCJGnV9lChoBkdAcShhpg1FY2gHTaICaAhHQJqseuHN5dJ1fZQoaAZHQHC9WNipeeFoB00XAWgIR0CasD9lmOENdX2UKGgGR0BwA7i0fHPvaAdNUgFoCEdAmrIyKFZgX3V9lChoBkdAbMvSXMQmNWgHTSABaAhHQJqzyk43m3h1fZQoaAZHQG9dVjqfOD9oB00+AmgIR0CatuhB7eEadX2UKGgGR0BvuMK/mDDkaAdNVAFoCEdAmrjAiA2AG3V9lChoBkdAcVWjx0+1SmgHTS8BaAhHQJq6e3UhFE11fZQoaAZHQHF8MeXAuZloB03RAWgIR0Cav0d5prULdX2UKGgGR0BlDmPRzBAOaAdN6ANoCEdAmsTOARTS9nV9lChoBkdAbZNw5vLowGgHTQIBaAhHQJrGMckt29t1fZQoaAZHQG5EmNrCWNZoB00RAWgIR0Cax6Bltj0+dX2UKGgGR0BxdVyNn5BUaAdN2wFoCEdAms08ZDRc/3V9lChoBkdAb2TP0I1LrWgHTRUBaAhHQJrPQwmE5AB1fZQoaAZHQG/p6LXL/0doB00GAWgIR0Ca0UwTdtVJdX2UKGgGR0Bh9whpxm03aAdN6ANoCEdAmtcHpfQa73V9lChoBkdAcNz6TGHYYmgHTS4BaAhHQJra59QXQ+l1fZQoaAZHQG3HqPXCj1xoB00AAWgIR0Ca3Ei83++/dX2UKGgGR0BtALhJiAlOaAdNAgFoCEdAmt2lenhsInV9lChoBkdAbsoRdyDIzWgHTe8BaAhHQJrgV0nw5Np1fZQoaAZHQHGhp5VwPy1oB003AWgIR0Ca4gk3S8aodX2UKGgGR0BxxfThHbypaAdNNAFoCEdAmuPNVmz0H3V9lChoBkdAbk8wyIpH7WgHS/poCEdAmuUlhb4agnV9lChoBkdAZPXaPCEYfmgHTegDaAhHQJrs8psoDxN1fZQoaAZHQGejxEF4cFRoB03oA2gIR0Ca8l8x9G7SdX2UKGgGR0BuGw1WKdhBaAdNFAFoCEdAmvYhIFvAGnV9lChoBkdAYpVXf642CWgHTegDaAhHQJr8I9TxXn11fZQoaAZHQHH7w5myxA1oB0v2aAhHQJr9ziYLLIR1fZQoaAZHQG7zdtdiUgVoB00KAWgIR0Ca/7VI7NjcdX2UKGgGR0Bw5mfqX4TLaAdNKAFoCEdAmwIHaBZpz3V9lChoBkdAO+sHbAUL2GgHS+hoCEdAmwWnqiXY2HV9lChoBkdAbp+ZZ0Syt2gHTREBaAhHQJsHHzRQaaV1fZQoaAZHQHCLPJzT4L1oB0vvaAhHQJsIkbJfYz11fZQoaAZHQHEh9O2y9mJoB00tAWgIR0CbCivCdjG2dX2UKGgGR0BxOcDvE0iyaAdNHQFoCEdAmwusRHww03V9lChoBkdAcTssasIVumgHTS0BaAhHQJsNVKtga3t1fZQoaAZHQG42OAy2x6hoB0vtaAhHQJsOnjxTbWV1fZQoaAZHQEnnOIqLCN1oB0vYaAhHQJsPvTBqKxd1fZQoaAZHQE6ztShrWRRoB0u8aAhHQJsTArPMSsd1fZQoaAZHQHCDLHuJDVpoB01CAWgIR0CbFMXr+o9+dX2UKGgGR0BwU7AnDziCaAdNIgJoCEdAmxfEWZZ0S3V9lChoBkdAbnlvze40/GgHTQYBaAhHQJsZO2KEWZZ1fZQoaAZHQHD5NnPE87poB01KAmgIR0CbHF/8EV32dX2UKGgGR0BxvdjiGWUsaAdNKQFoCEdAmyBGszVMEnV9lChoBkdAcuZJeE7GN2gHTSkBaAhHQJsh55AyEct1fZQoaAZHQHHnbV8Ti85oB00SAWgIR0CbI1wmE5AAdX2UKGgGR0ByIwm7aqS6aAdNFwFoCEdAmyTiHIp6QnV9lChoBkdAcSov1UVBU2gHS/RoCEdAmyYnN1QqJHV9lChoBkdAcA/zH0btJGgHTY0BaAhHQJsoQSQHRkV1fZQoaAZHQHCj4G2TgVJoB00mAWgIR0CbKdp0fYBedX2UKGgGR0Bt73bAUL2IaAdNLgFoCEdAmy7M6q8143V9lChoBkdAcLtwEQoTf2gHTRwBaAhHQJsxD3RG+bp1fZQoaAZHQD0OR2bG3nZoB0vsaAhHQJsyuwxFiKB1fZQoaAZHQHI6ZlOGj9JoB006AWgIR0CbNHj1PFefdX2UKGgGR0Ar0jN6gM+eaAdL12gIR0CbNaxzaK1pdX2UKGgGR0BxtXAGjbi7aAdNDAFoCEdAmzci9ytFKHV9lChoBkdAcjEXQMQVbmgHTbkBaAhHQJs5qdrftQd1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1956,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQH53JAY29lGmAExZq6pP3YIwDaW5jlIoQpWYL18eu40IKN5GmudRvLnWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylIoFCZ+O3wB1YnViLg==",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb27748ac1ca5b1c8f7c22f516578519bd927fb13845b54704f1adcb05c45dbf
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62d2cb6cb593ac30ed345c86d118536061f724e87d06327037b3f02822c9efd4
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30cae2446909287b320ffe729f5ed9b21384adbd31f70df95adafcdd6e58f744
3
+ size 152208
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.3863255, "std_reward": 20.77718088953051, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-08T23:14:48.181863"}