--- datasets: - wikimedia/wikipedia language: - en --- # Model Info mamba2 Trained on a shuffeld wikimedia/wikipedia 20231101.en dataset (seed=42) Model checkpoints as branches ``` per_device_train_batch_size=32, logging_steps=3650, gradient_accumulation_steps=8, num_train_epochs=1, weight_decay=0.1, warmup_steps=1_000, lr_scheduler_type="cosine", learning_rate=5e-4, save_steps=3650, fp16=True, ``` ## How to use Install: ``` pip install causal-conv1d>=1.2.0 pip install mamba-ssm ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer mamba2 = AutoModelForCausalLM.from_pretrained("J4bb4wukis/mamba2_432m_wikipedia_en_shuffeld") tokenizer = AutoTokenizer.from_pretrained("J4bb4wukis/mamba2_432m_wikipedia_en_shuffeld") prompts = "Angela Merkel is" inputs = tokenizer(prompts,return_tensors='pt').input_ids outputs = mamba2.generate(inputs, max_new_tokens=100, do_sample=True, top_k=10, top_p=0.95) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ```