JCAI2000 commited on
Commit
3dd9239
·
1 Parent(s): 2658d27

End of training

Browse files
Files changed (4) hide show
  1. README.md +160 -0
  2. config.json +78 -0
  3. pytorch_model.bin +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b0-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the JCAI2000/100By100BranchPNG dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0690
21
+ - Mean Iou: 0.9227
22
+ - Mean Accuracy: 0.9583
23
+ - Overall Accuracy: 0.9768
24
+ - Accuracy Background: 0.9865
25
+ - Accuracy Branch: 0.9302
26
+ - Iou Background: 0.9725
27
+ - Iou Branch: 0.8730
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 6e-05
47
+ - train_batch_size: 2
48
+ - eval_batch_size: 2
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 100
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Branch | Iou Background | Iou Branch |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
58
+ | 0.3966 | 1.05 | 20 | 0.5815 | 0.7080 | 0.9204 | 0.8718 | 0.8466 | 0.9943 | 0.8456 | 0.5705 |
59
+ | 0.4323 | 2.11 | 40 | 0.4362 | 0.7821 | 0.9452 | 0.9151 | 0.8994 | 0.9910 | 0.8977 | 0.6664 |
60
+ | 0.3222 | 3.16 | 60 | 0.3081 | 0.8239 | 0.9568 | 0.9358 | 0.9249 | 0.9887 | 0.9227 | 0.7251 |
61
+ | 0.2649 | 4.21 | 80 | 0.2638 | 0.8164 | 0.9538 | 0.9324 | 0.9212 | 0.9864 | 0.9186 | 0.7141 |
62
+ | 0.2282 | 5.26 | 100 | 0.1843 | 0.8806 | 0.9608 | 0.9609 | 0.9609 | 0.9608 | 0.9532 | 0.8080 |
63
+ | 0.2003 | 6.32 | 120 | 0.1688 | 0.9144 | 0.9627 | 0.9737 | 0.9794 | 0.9461 | 0.9686 | 0.8602 |
64
+ | 0.1665 | 7.37 | 140 | 0.1183 | 0.9164 | 0.9566 | 0.9747 | 0.9842 | 0.9290 | 0.9700 | 0.8629 |
65
+ | 0.1714 | 8.42 | 160 | 0.1597 | 0.8778 | 0.9396 | 0.9615 | 0.9729 | 0.9064 | 0.9544 | 0.8012 |
66
+ | 0.119 | 9.47 | 180 | 0.1132 | 0.9038 | 0.9409 | 0.9712 | 0.9869 | 0.8948 | 0.9659 | 0.8416 |
67
+ | 0.1382 | 10.53 | 200 | 0.1265 | 0.9153 | 0.9598 | 0.9741 | 0.9816 | 0.9380 | 0.9692 | 0.8613 |
68
+ | 0.0826 | 11.58 | 220 | 0.1063 | 0.9163 | 0.9533 | 0.9749 | 0.9861 | 0.9206 | 0.9701 | 0.8624 |
69
+ | 0.12 | 12.63 | 240 | 0.1022 | 0.9142 | 0.9673 | 0.9734 | 0.9765 | 0.9580 | 0.9681 | 0.8603 |
70
+ | 0.077 | 13.68 | 260 | 0.1009 | 0.9249 | 0.9607 | 0.9775 | 0.9862 | 0.9351 | 0.9732 | 0.8767 |
71
+ | 0.099 | 14.74 | 280 | 0.0803 | 0.9198 | 0.9508 | 0.9762 | 0.9895 | 0.9121 | 0.9718 | 0.8679 |
72
+ | 0.0843 | 15.79 | 300 | 0.0850 | 0.9236 | 0.9616 | 0.9770 | 0.9850 | 0.9383 | 0.9726 | 0.8746 |
73
+ | 0.0883 | 16.84 | 320 | 0.0946 | 0.9165 | 0.9660 | 0.9742 | 0.9786 | 0.9533 | 0.9692 | 0.8637 |
74
+ | 0.0778 | 17.89 | 340 | 0.0872 | 0.9202 | 0.9617 | 0.9758 | 0.9832 | 0.9402 | 0.9712 | 0.8693 |
75
+ | 0.0746 | 18.95 | 360 | 0.0738 | 0.9226 | 0.9602 | 0.9767 | 0.9853 | 0.9352 | 0.9723 | 0.8730 |
76
+ | 0.0767 | 20.0 | 380 | 0.0811 | 0.9221 | 0.9622 | 0.9764 | 0.9838 | 0.9405 | 0.9719 | 0.8723 |
77
+ | 0.054 | 21.05 | 400 | 0.0707 | 0.9239 | 0.9581 | 0.9772 | 0.9872 | 0.9290 | 0.9729 | 0.8748 |
78
+ | 0.0712 | 22.11 | 420 | 0.0798 | 0.9135 | 0.9462 | 0.9743 | 0.9889 | 0.9034 | 0.9696 | 0.8575 |
79
+ | 0.0565 | 23.16 | 440 | 0.0780 | 0.9208 | 0.9669 | 0.9757 | 0.9803 | 0.9535 | 0.9710 | 0.8706 |
80
+ | 0.0572 | 24.21 | 460 | 0.0695 | 0.9197 | 0.9548 | 0.9760 | 0.9870 | 0.9225 | 0.9714 | 0.8679 |
81
+ | 0.0927 | 25.26 | 480 | 0.0739 | 0.9169 | 0.9591 | 0.9747 | 0.9829 | 0.9354 | 0.9699 | 0.8638 |
82
+ | 0.0513 | 26.32 | 500 | 0.0709 | 0.9216 | 0.9539 | 0.9767 | 0.9885 | 0.9192 | 0.9723 | 0.8708 |
83
+ | 0.0439 | 27.37 | 520 | 0.0662 | 0.9254 | 0.9579 | 0.9778 | 0.9881 | 0.9276 | 0.9736 | 0.8772 |
84
+ | 0.0923 | 28.42 | 540 | 0.0693 | 0.9187 | 0.9635 | 0.9752 | 0.9812 | 0.9458 | 0.9704 | 0.8670 |
85
+ | 0.0706 | 29.47 | 560 | 0.0773 | 0.9171 | 0.9650 | 0.9745 | 0.9794 | 0.9506 | 0.9695 | 0.8646 |
86
+ | 0.0376 | 30.53 | 580 | 0.0698 | 0.9236 | 0.9601 | 0.9770 | 0.9859 | 0.9343 | 0.9727 | 0.8745 |
87
+ | 0.042 | 31.58 | 600 | 0.0750 | 0.9157 | 0.9442 | 0.9752 | 0.9913 | 0.8972 | 0.9707 | 0.8608 |
88
+ | 0.0957 | 32.63 | 620 | 0.0676 | 0.9212 | 0.9523 | 0.9766 | 0.9893 | 0.9154 | 0.9723 | 0.8701 |
89
+ | 0.0859 | 33.68 | 640 | 0.0649 | 0.9220 | 0.9514 | 0.9769 | 0.9902 | 0.9126 | 0.9726 | 0.8713 |
90
+ | 0.0544 | 34.74 | 660 | 0.0684 | 0.9197 | 0.9610 | 0.9757 | 0.9833 | 0.9387 | 0.9710 | 0.8684 |
91
+ | 0.0519 | 35.79 | 680 | 0.0716 | 0.9148 | 0.9455 | 0.9748 | 0.9900 | 0.9010 | 0.9702 | 0.8594 |
92
+ | 0.033 | 36.84 | 700 | 0.0695 | 0.9217 | 0.9584 | 0.9765 | 0.9859 | 0.9310 | 0.9720 | 0.8714 |
93
+ | 0.0491 | 37.89 | 720 | 0.0657 | 0.9239 | 0.9583 | 0.9772 | 0.9871 | 0.9295 | 0.9729 | 0.8749 |
94
+ | 0.04 | 38.95 | 740 | 0.0638 | 0.9254 | 0.9583 | 0.9777 | 0.9879 | 0.9288 | 0.9735 | 0.8772 |
95
+ | 0.0442 | 40.0 | 760 | 0.0667 | 0.9246 | 0.9598 | 0.9774 | 0.9866 | 0.9330 | 0.9731 | 0.8762 |
96
+ | 0.0272 | 41.05 | 780 | 0.0673 | 0.9205 | 0.9551 | 0.9762 | 0.9872 | 0.9230 | 0.9718 | 0.8692 |
97
+ | 0.0438 | 42.11 | 800 | 0.0671 | 0.9214 | 0.9532 | 0.9766 | 0.9888 | 0.9175 | 0.9723 | 0.8706 |
98
+ | 0.0276 | 43.16 | 820 | 0.0666 | 0.9239 | 0.9625 | 0.9771 | 0.9846 | 0.9403 | 0.9726 | 0.8752 |
99
+ | 0.038 | 44.21 | 840 | 0.0656 | 0.9235 | 0.9535 | 0.9773 | 0.9897 | 0.9172 | 0.9731 | 0.8738 |
100
+ | 0.0508 | 45.26 | 860 | 0.0665 | 0.9199 | 0.9530 | 0.9761 | 0.9882 | 0.9177 | 0.9717 | 0.8681 |
101
+ | 0.0279 | 46.32 | 880 | 0.0629 | 0.9281 | 0.9597 | 0.9786 | 0.9884 | 0.9310 | 0.9745 | 0.8816 |
102
+ | 0.0854 | 47.37 | 900 | 0.0638 | 0.9233 | 0.9548 | 0.9772 | 0.9889 | 0.9208 | 0.9729 | 0.8737 |
103
+ | 0.0457 | 48.42 | 920 | 0.0644 | 0.9252 | 0.9590 | 0.9776 | 0.9874 | 0.9306 | 0.9734 | 0.8769 |
104
+ | 0.0404 | 49.47 | 940 | 0.0673 | 0.9244 | 0.9599 | 0.9773 | 0.9864 | 0.9335 | 0.9730 | 0.8758 |
105
+ | 0.0349 | 50.53 | 960 | 0.0631 | 0.9269 | 0.9633 | 0.9780 | 0.9857 | 0.9408 | 0.9738 | 0.8800 |
106
+ | 0.0304 | 51.58 | 980 | 0.0651 | 0.9250 | 0.9589 | 0.9776 | 0.9873 | 0.9305 | 0.9733 | 0.8766 |
107
+ | 0.0318 | 52.63 | 1000 | 0.0693 | 0.9238 | 0.9637 | 0.9769 | 0.9838 | 0.9436 | 0.9725 | 0.8751 |
108
+ | 0.0693 | 53.68 | 1020 | 0.0679 | 0.9234 | 0.9598 | 0.9770 | 0.9859 | 0.9338 | 0.9726 | 0.8741 |
109
+ | 0.051 | 54.74 | 1040 | 0.0650 | 0.9205 | 0.9514 | 0.9764 | 0.9894 | 0.9134 | 0.9721 | 0.8690 |
110
+ | 0.0418 | 55.79 | 1060 | 0.0656 | 0.9250 | 0.9597 | 0.9775 | 0.9868 | 0.9327 | 0.9733 | 0.8767 |
111
+ | 0.028 | 56.84 | 1080 | 0.0647 | 0.9245 | 0.9584 | 0.9774 | 0.9873 | 0.9295 | 0.9731 | 0.8758 |
112
+ | 0.0331 | 57.89 | 1100 | 0.0678 | 0.9211 | 0.9550 | 0.9764 | 0.9876 | 0.9224 | 0.9720 | 0.8701 |
113
+ | 0.14 | 58.95 | 1120 | 0.0673 | 0.9215 | 0.9543 | 0.9766 | 0.9882 | 0.9204 | 0.9722 | 0.8707 |
114
+ | 0.0267 | 60.0 | 1140 | 0.0655 | 0.9241 | 0.9571 | 0.9774 | 0.9879 | 0.9263 | 0.9731 | 0.8751 |
115
+ | 0.0216 | 61.05 | 1160 | 0.0663 | 0.9231 | 0.9606 | 0.9768 | 0.9853 | 0.9360 | 0.9724 | 0.8737 |
116
+ | 0.0891 | 62.11 | 1180 | 0.0666 | 0.9250 | 0.9634 | 0.9774 | 0.9846 | 0.9421 | 0.9730 | 0.8769 |
117
+ | 0.0233 | 63.16 | 1200 | 0.0659 | 0.9252 | 0.9598 | 0.9776 | 0.9869 | 0.9326 | 0.9733 | 0.8770 |
118
+ | 0.0323 | 64.21 | 1220 | 0.0666 | 0.9235 | 0.9593 | 0.9771 | 0.9863 | 0.9323 | 0.9727 | 0.8744 |
119
+ | 0.0239 | 65.26 | 1240 | 0.0683 | 0.9229 | 0.9586 | 0.9769 | 0.9864 | 0.9308 | 0.9725 | 0.8733 |
120
+ | 0.0671 | 66.32 | 1260 | 0.0684 | 0.9167 | 0.9478 | 0.9753 | 0.9896 | 0.9059 | 0.9708 | 0.8626 |
121
+ | 0.0359 | 67.37 | 1280 | 0.0683 | 0.9223 | 0.9581 | 0.9767 | 0.9864 | 0.9298 | 0.9723 | 0.8723 |
122
+ | 0.0338 | 68.42 | 1300 | 0.0670 | 0.9225 | 0.9593 | 0.9767 | 0.9858 | 0.9328 | 0.9723 | 0.8728 |
123
+ | 0.0433 | 69.47 | 1320 | 0.0688 | 0.9198 | 0.9520 | 0.9761 | 0.9887 | 0.9154 | 0.9717 | 0.8679 |
124
+ | 0.0341 | 70.53 | 1340 | 0.0650 | 0.9246 | 0.9587 | 0.9775 | 0.9872 | 0.9303 | 0.9732 | 0.8760 |
125
+ | 0.0305 | 71.58 | 1360 | 0.0677 | 0.9241 | 0.9585 | 0.9773 | 0.9871 | 0.9300 | 0.9730 | 0.8752 |
126
+ | 0.0305 | 72.63 | 1380 | 0.0643 | 0.9261 | 0.9594 | 0.9779 | 0.9876 | 0.9311 | 0.9737 | 0.8784 |
127
+ | 0.0388 | 73.68 | 1400 | 0.0662 | 0.9260 | 0.9603 | 0.9779 | 0.9870 | 0.9335 | 0.9736 | 0.8783 |
128
+ | 0.0177 | 74.74 | 1420 | 0.0656 | 0.9230 | 0.9585 | 0.9769 | 0.9865 | 0.9305 | 0.9725 | 0.8734 |
129
+ | 0.0441 | 75.79 | 1440 | 0.0673 | 0.9243 | 0.9581 | 0.9774 | 0.9874 | 0.9288 | 0.9731 | 0.8755 |
130
+ | 0.0245 | 76.84 | 1460 | 0.0659 | 0.9252 | 0.9600 | 0.9776 | 0.9868 | 0.9332 | 0.9733 | 0.8771 |
131
+ | 0.0832 | 77.89 | 1480 | 0.0666 | 0.9249 | 0.9598 | 0.9775 | 0.9867 | 0.9330 | 0.9732 | 0.8766 |
132
+ | 0.0332 | 78.95 | 1500 | 0.0695 | 0.9221 | 0.9563 | 0.9767 | 0.9873 | 0.9254 | 0.9723 | 0.8719 |
133
+ | 0.0196 | 80.0 | 1520 | 0.0678 | 0.9247 | 0.9602 | 0.9774 | 0.9864 | 0.9340 | 0.9731 | 0.8762 |
134
+ | 0.0261 | 81.05 | 1540 | 0.0681 | 0.9245 | 0.9590 | 0.9774 | 0.9870 | 0.9311 | 0.9731 | 0.8759 |
135
+ | 0.0312 | 82.11 | 1560 | 0.0689 | 0.9231 | 0.9571 | 0.9770 | 0.9874 | 0.9267 | 0.9727 | 0.8735 |
136
+ | 0.023 | 83.16 | 1580 | 0.0697 | 0.9210 | 0.9554 | 0.9764 | 0.9873 | 0.9234 | 0.9720 | 0.8700 |
137
+ | 0.0257 | 84.21 | 1600 | 0.0683 | 0.9198 | 0.9514 | 0.9762 | 0.9891 | 0.9136 | 0.9718 | 0.8679 |
138
+ | 0.0243 | 85.26 | 1620 | 0.0724 | 0.9226 | 0.9600 | 0.9767 | 0.9854 | 0.9345 | 0.9723 | 0.8730 |
139
+ | 0.0418 | 86.32 | 1640 | 0.0713 | 0.9226 | 0.9584 | 0.9768 | 0.9864 | 0.9304 | 0.9724 | 0.8727 |
140
+ | 0.0172 | 87.37 | 1660 | 0.0694 | 0.9204 | 0.9542 | 0.9762 | 0.9877 | 0.9206 | 0.9718 | 0.8689 |
141
+ | 0.0343 | 88.42 | 1680 | 0.0712 | 0.9210 | 0.9562 | 0.9763 | 0.9868 | 0.9257 | 0.9719 | 0.8701 |
142
+ | 0.0296 | 89.47 | 1700 | 0.0686 | 0.9218 | 0.9557 | 0.9766 | 0.9875 | 0.9239 | 0.9722 | 0.8713 |
143
+ | 0.0275 | 90.53 | 1720 | 0.0698 | 0.9225 | 0.9573 | 0.9768 | 0.9869 | 0.9277 | 0.9724 | 0.8725 |
144
+ | 0.0268 | 91.58 | 1740 | 0.0679 | 0.9231 | 0.9583 | 0.9770 | 0.9866 | 0.9300 | 0.9726 | 0.8736 |
145
+ | 0.0626 | 92.63 | 1760 | 0.0668 | 0.9226 | 0.9570 | 0.9769 | 0.9872 | 0.9269 | 0.9725 | 0.8727 |
146
+ | 0.0495 | 93.68 | 1780 | 0.0679 | 0.9224 | 0.9573 | 0.9768 | 0.9869 | 0.9277 | 0.9724 | 0.8725 |
147
+ | 0.0187 | 94.74 | 1800 | 0.0689 | 0.9221 | 0.9563 | 0.9767 | 0.9873 | 0.9253 | 0.9723 | 0.8718 |
148
+ | 0.0164 | 95.79 | 1820 | 0.0698 | 0.9228 | 0.9580 | 0.9769 | 0.9867 | 0.9292 | 0.9725 | 0.8732 |
149
+ | 0.0274 | 96.84 | 1840 | 0.0687 | 0.9225 | 0.9572 | 0.9768 | 0.9870 | 0.9274 | 0.9724 | 0.8725 |
150
+ | 0.0197 | 97.89 | 1860 | 0.0696 | 0.9227 | 0.9580 | 0.9768 | 0.9867 | 0.9292 | 0.9725 | 0.8729 |
151
+ | 0.0362 | 98.95 | 1880 | 0.0691 | 0.9223 | 0.9575 | 0.9767 | 0.9868 | 0.9282 | 0.9723 | 0.8723 |
152
+ | 0.0245 | 100.0 | 1900 | 0.0690 | 0.9227 | 0.9583 | 0.9768 | 0.9865 | 0.9302 | 0.9725 | 0.8730 |
153
+
154
+
155
+ ### Framework versions
156
+
157
+ - Transformers 4.33.0
158
+ - Pytorch 2.0.1+cu117
159
+ - Datasets 2.14.4
160
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "background",
32
+ "1": "branch"
33
+ },
34
+ "image_size": 224,
35
+ "initializer_range": 0.02,
36
+ "label2id": {
37
+ "background": 0,
38
+ "branch": 1
39
+ },
40
+ "layer_norm_eps": 1e-06,
41
+ "mlp_ratios": [
42
+ 4,
43
+ 4,
44
+ 4,
45
+ 4
46
+ ],
47
+ "model_type": "segformer",
48
+ "num_attention_heads": [
49
+ 1,
50
+ 2,
51
+ 5,
52
+ 8
53
+ ],
54
+ "num_channels": 3,
55
+ "num_encoder_blocks": 4,
56
+ "patch_sizes": [
57
+ 7,
58
+ 3,
59
+ 3,
60
+ 3
61
+ ],
62
+ "reshape_last_stage": true,
63
+ "semantic_loss_ignore_index": 255,
64
+ "sr_ratios": [
65
+ 8,
66
+ 4,
67
+ 2,
68
+ 1
69
+ ],
70
+ "strides": [
71
+ 4,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "torch_dtype": "float32",
77
+ "transformers_version": "4.33.0"
78
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4992c3653eb330589e7f2757e20e47158198c7ad237e139817b96a1ad79644aa
3
+ size 14931789
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b24d27704417344632e9aaebdba0c937059fa304e13f6af8f6b867170d5c888
3
+ size 4091