Update README.md
Browse files
README.md
CHANGED
@@ -20,8 +20,8 @@ license: llama3
|
|
20 |
|
21 |
# Llama-3.1-8B-Instruct-Elite
|
22 |
|
23 |
-
|
24 |
-
|
25 |
|
26 |
<!-- Badges Layout for LLaMA fine-tuned model -->
|
27 |
<div align="center">
|
@@ -33,7 +33,6 @@ license: llama3
|
|
33 |
<img alt="GPU" src="https://img.shields.io/badge/GPU-A100_single-3f51b5?style=for-the-badge">
|
34 |
|
35 |
<!-- Bottom row: extra info -->
|
36 |
-
|
37 |
<img alt="Quantization" src="https://img.shields.io/badge/GGUF-Q4_K_M-00acc1?style=for-the-badge">
|
38 |
<img alt="License" src="https://img.shields.io/badge/License-Llama_3.1_Community-ff7043?style=for-the-badge">
|
39 |
|
@@ -41,53 +40,54 @@ license: llama3
|
|
41 |
|
42 |
---
|
43 |
|
44 |
-
##
|
45 |
-
- [
|
46 |
-
- [
|
47 |
-
- [
|
48 |
-
- [
|
49 |
-
- [
|
50 |
-
- [
|
51 |
-
- [
|
52 |
-
- [
|
53 |
-
- [
|
54 |
-
- [
|
|
|
55 |
|
56 |
---
|
57 |
|
58 |
-
##
|
59 |
-
-
|
60 |
-
-
|
61 |
-
-
|
62 |
-
-
|
63 |
-
-
|
64 |
|
65 |
-
>
|
66 |
|
67 |
---
|
68 |
|
69 |
-
##
|
70 |
-
-
|
71 |
-
-
|
72 |
-
-
|
73 |
-
-
|
74 |
|
75 |
---
|
76 |
|
77 |
-
##
|
78 |
-
-
|
79 |
-
-
|
80 |
-
-
|
81 |
-
-
|
82 |
|
83 |
-
>
|
84 |
|
85 |
---
|
86 |
|
87 |
-
##
|
88 |
|
89 |
<details>
|
90 |
-
<summary><b>Transformers
|
91 |
|
92 |
```python
|
93 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
@@ -134,50 +134,42 @@ print(outputs[0].outputs[0].text)
|
|
134 |
</details>
|
135 |
|
136 |
<details>
|
137 |
-
<summary><b>llama.cpp
|
138 |
|
139 |
```bash
|
140 |
-
./main -m Llama-3.1-8B-Instruct-Elite.Q4_K_M.gguf
|
141 |
-
-p "以要点说明:如何将技术文章改写得更专业且干净?"
|
142 |
```
|
143 |
</details>
|
144 |
|
145 |
---
|
146 |
|
147 |
-
##
|
148 |
-
-
|
149 |
-
-
|
150 |
-
-
|
151 |
-
|
152 |
-
---
|
153 |
-
|
154 |
-
## 适用与限制
|
155 |
-
**适用**:中/英文或中英混排的**问答、摘要、说明文、技术/业务写作**;**结构化输出**(计划、步骤、表格、FAQ、会议纪要)。
|
156 |
-
**限制**:强事实性、需**最新信息**的任务建议配合检索;医疗/法律/投资等**高风险**输出需人工校对;不得用于违法或伤害性用途。
|
157 |
|
158 |
---
|
159 |
|
160 |
-
##
|
161 |
-
|
162 |
-
- **
|
163 |
-
- **校验**:`shasum -a 256 <filename>`
|
164 |
|
165 |
---
|
166 |
|
167 |
-
##
|
168 |
-
-
|
169 |
-
-
|
170 |
|
171 |
---
|
172 |
|
173 |
-
##
|
174 |
-
- Meta
|
175 |
-
-
|
176 |
-
-
|
177 |
|
178 |
---
|
179 |
|
180 |
-
##
|
181 |
```bibtex
|
182 |
@misc{JackrongL31_8B_Elite,
|
183 |
title = {Jackrong/Llama-3.1-8B-Instruct-Elite},
|
@@ -189,5 +181,5 @@ print(outputs[0].outputs[0].text)
|
|
189 |
|
190 |
---
|
191 |
|
192 |
-
##
|
193 |
-
- v1.0
|
|
|
20 |
|
21 |
# Llama-3.1-8B-Instruct-Elite
|
22 |
|
23 |
+
**Abstract**
|
24 |
+
A bilingual (Chinese/English) instruction-tuned model based on **Llama-3.1-8B-Instruct**. It follows the training recipe of *Llama-3.2-3B-Elite* (Qwen-3-235b-a22b-Instruct-2507 as teacher for distillation + SFT), but intentionally reduces emojis (From Qwen3 teacher) while retaining and reinforcing professional formatting (e.g., bolded subheadings, bullet lists, clear paragraphs) to produce answers that are cleaner, more stable, and easier to read.
|
25 |
|
26 |
<!-- Badges Layout for LLaMA fine-tuned model -->
|
27 |
<div align="center">
|
|
|
33 |
<img alt="GPU" src="https://img.shields.io/badge/GPU-A100_single-3f51b5?style=for-the-badge">
|
34 |
|
35 |
<!-- Bottom row: extra info -->
|
|
|
36 |
<img alt="Quantization" src="https://img.shields.io/badge/GGUF-Q4_K_M-00acc1?style=for-the-badge">
|
37 |
<img alt="License" src="https://img.shields.io/badge/License-Llama_3.1_Community-ff7043?style=for-the-badge">
|
38 |
|
|
|
40 |
|
41 |
---
|
42 |
|
43 |
+
## Table of Contents
|
44 |
+
- [Highlights](#highlights)
|
45 |
+
- [Model Overview](#model-overview)
|
46 |
+
- [Training & Data](#training--data)
|
47 |
+
- [Quickstart](#quickstart)
|
48 |
+
- [Prompting & Output Conventions](#prompting--output-conventions)
|
49 |
+
- [Use Cases & Limitations](#use-cases--limitations)
|
50 |
+
- [Deployment & Quantization](#deployment--quantization)
|
51 |
+
- [License](#license)
|
52 |
+
- [Acknowledgments](#acknowledgments)
|
53 |
+
- [Citation](#citation)
|
54 |
+
- [Changelog](#changelog)
|
55 |
|
56 |
---
|
57 |
|
58 |
+
## Highlights
|
59 |
+
- **Professional and clean**: fewer emojis by default; outputs emphasize bolded subheadings + bullet lists, making content easy to copy and further edit.
|
60 |
+
- **Stable structure**: Consistent formatting for sectioned reports, step checklists, comparison tables, and key-point summaries.
|
61 |
+
- **Bilingual / mixed text friendly**: Strong terminology coherence and clear hierarchy for Chinese, English, and mixed Chinese–English scenarios.
|
62 |
+
- **Stronger instruction-following**: Higher adherence to constraints such as “no emojis,” “only output key-point tables,” and “preserve Markdown heading levels.”
|
63 |
+
- **Controllable verbosity**: Defaults to less verbosity, focusing on key information while keeping necessary context.
|
64 |
|
65 |
+
> **Base**: `meta-llama/Llama-3.1-8B-Instruct`; **Training paradigm**: Teacher distillation + SFT.
|
66 |
|
67 |
---
|
68 |
|
69 |
+
## Model Overview
|
70 |
+
- **Parameters**: 8B
|
71 |
+
- **Tasks**: Instruction following / Dialogue generation / Q&A / Summarization / Structured output
|
72 |
+
- **Languages**: Chinese & English (robust for mixed Chinese–English)
|
73 |
+
- **Goal**: Deliver concise, professional, and format-friendly content on modest compute (reduced emojis; keep bolded subheadings, bullet lists, and other formatting enhancements).
|
74 |
|
75 |
---
|
76 |
|
77 |
+
## Training & Data
|
78 |
+
- **Data size**: About **80,000** high-quality instruction–response pairs (Chinese/English mix covering Q&A, summarization, expository writing, structured output, procedural steps, etc.).
|
79 |
+
- **Method**: **Distillation** from a teacher model + **SFT**; explicit **format/style control** (fewer emojis; emphasize headings/lists/bold).
|
80 |
+
- **Compute**: **Single A100**; LoRA/QLoRA can complete several epochs within a short time.
|
81 |
+
- **Style & constraints**: Fewer emojis; strengthened bold subheadings, bullet lists, bold key terms, and clear paragraph hierarchy.
|
82 |
|
83 |
+
> If a distilled-data subset is released, add links and stats here (sample counts / language ratios / filtering rules).
|
84 |
|
85 |
---
|
86 |
|
87 |
+
## Quickstart
|
88 |
|
89 |
<details>
|
90 |
+
<summary><b>Transformers (recommended)</b></summary>
|
91 |
|
92 |
```python
|
93 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
134 |
</details>
|
135 |
|
136 |
<details>
|
137 |
+
<summary><b>llama.cpp (GGUF: Q4_K_M)</b></summary>
|
138 |
|
139 |
```bash
|
140 |
+
./main -m Llama-3.1-8B-Instruct-Elite.Q4_K_M.gguf -p "以要点说明:如何将技术文章改写得更专业且干净?"
|
|
|
141 |
```
|
142 |
</details>
|
143 |
|
144 |
---
|
145 |
|
146 |
+
## Prompting & Output Conventions
|
147 |
+
- Organize with concise headings and bolded subheadings; bold key terms and conclusions where helpful.
|
148 |
+
- Use bullet lists for steps and key points; avoid emojis by default.
|
149 |
+
- **Sampling tips**: `temperature=0.6–0.8`, `top_p=0.9–0.95`.
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
---
|
152 |
|
153 |
+
## Use Cases & Limitations
|
154 |
+
**Use cases**: Chinese/English or mixed bilingual **Q&A, summarization, instructional/technical/business writing**; **structured outputs** (plans, steps, tables, FAQs, meeting minutes).
|
155 |
+
**Limitations**: For high-factuality tasks that require **up-to-date information**, pair with retrieval; for medical/legal/financial or other **high-risk** scenarios, use human review; do not use for illegal or harmful purposes.
|
|
|
156 |
|
157 |
---
|
158 |
|
159 |
+
## License
|
160 |
+
- **Model weights**: **Llama 3.1 Community License** (same as base).
|
161 |
+
- **Code/scripts**: May use **Apache-2.0** or similar; the weight license remains unchanged.
|
162 |
|
163 |
---
|
164 |
|
165 |
+
## Acknowledgments
|
166 |
+
- Meta for **Llama-3.1** and the broader ecosystem
|
167 |
+
- Open-source community contributions to **distillation, SFT, evaluation, and deployment**
|
168 |
+
- Training recipe and practices adapted from *Llama-3.2-3B-Elite*
|
169 |
|
170 |
---
|
171 |
|
172 |
+
## Citation
|
173 |
```bibtex
|
174 |
@misc{JackrongL31_8B_Elite,
|
175 |
title = {Jackrong/Llama-3.1-8B-Instruct-Elite},
|
|
|
181 |
|
182 |
---
|
183 |
|
184 |
+
## Changelog
|
185 |
+
- v1.0: Initial release. ~**80k** samples; trained on a **single A100**; provides **GGUF Q4_K_M**; fewer emojis; strengthened bold subheadings and bullet lists; training recipe aligned with 3.2-3B-Elite.
|