--- language: - fr license: apache-2.0 tags: - whisper - generated_from_trainer datasets: - mozilla-foundation/common_voice_15_0 - BrunoHays/multilingual-tedx-fr - PolyAI/minds14 - facebook/multilingual_librispeech - facebook/voxpopuli - google/fleurs metrics: - wer model-index: - name: Whisper tiny French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset1: name: mozilla-foundation/common_voice_15_0 fr type: mozilla-foundation/common_voice_15_0 config: fr split: test args: fr metrics: - name: Wer type: wer value: 40.0 dataset2: name: facebook/multilingual_librispeech fr type: facebook/multilingual_librispeech config: fr split: test args: fr wer : 26.1 dataset3: name: facebook/voxpopuli fr type: facebook/voxpopuli config: fr split: test args: fr wer : 29.4 dataset4: name: google/fleurs fr type: google/fleurs config: fr split: test args: fr wer : 33.7 --- # Whisper tiny fr - JaepaX This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fr datasets. ## WER Result It achieves the following results on the evaluation sets - Mulit-Libri : "26.1", - common : "40.0" - voxpopuli : "29.4" - fleurs : "33.7"