# MobileNet v2 1.0 224 INT8 ## Description INT8 quantised version of MobileNet v2 model. Trained on ImageNet. ## License [Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) ## Related Materials ### Class Labels The class labels associated with this model can be downloaded by running the script `get_class_labels.sh`. ### Model Recreation Code Code to recreate this model can be found [here](recreate_model/). ## Network Information | Network Information | Value | |---------------------|----------------| | Framework | TensorFlow Lite | | SHA-1 Hash | 8de7996dfeadb5ab6f09e3114f3905fd03879eee | | Size (Bytes) | 4020936 | | Provenance | https://arxiv.org/pdf/1801.04381.pdf | | Paper | https://arxiv.org/pdf/1801.04381.pdf | ## Performance | Platform | Optimized | |----------|:---------:| | Cortex-A |:heavy_check_mark: | | Cortex-M |:heavy_check_mark: | | Mali GPU |:heavy_check_mark: | | Ethos U |:heavy_check_mark: | ### Key * :heavy_check_mark: - Will run on this platform. * :heavy_multiplication_x: - Will not run on this platform. ## Accuracy Dataset: ILSVRC 2012 | Metric | Value | |--------|-------| | Top 1 Accuracy | 0.697 | ## Optimizations | Optimization | Value | |--------------|---------| | Quantization | INT8 | ## Network Inputs
Input Node Name Shape Description
tfl.quantize (1, 224, 224, 3) Single 224x224 RGB image with INT8 values between -128 and 127
## Network Outputs
Output Node Name Shape Description
MobilenetV2/Predictions/Reshape_11 (1, 1001) Per-class confidence for 1001 ImageNet classes