File size: 12,872 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import multiprocessing
import pickle
import time
import traceback
from enum import IntEnum
import cv2
import numpy as np
from pathlib import Path
from core import imagelib, mplib, pathex
from core.imagelib import sd
from core.cv2ex import *
from core.interact import interact as io
from core.joblib import Subprocessor, SubprocessGenerator, ThisThreadGenerator
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType)
class SampleGeneratorFaceXSeg(SampleGeneratorBase):
def __init__ (self, paths, debug=False, batch_size=1, resolution=256, face_type=None,
generators_count=4, data_format="NHWC",
**kwargs):
super().__init__(debug, batch_size)
self.initialized = False
samples = sum([ SampleLoader.load (SampleType.FACE, path) for path in paths ] )
seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples).run()
if len(seg_sample_idxs) == 0:
seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples, count_xseg_mask=True).run()
if len(seg_sample_idxs) == 0:
raise Exception(f"No segmented faces found.")
else:
io.log_info(f"Using {len(seg_sample_idxs)} xseg labeled samples.")
else:
io.log_info(f"Using {len(seg_sample_idxs)} segmented samples.")
if self.debug:
self.generators_count = 1
else:
self.generators_count = max(1, generators_count)
args = (samples, seg_sample_idxs, resolution, face_type, data_format)
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, args )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, args, start_now=False ) for i in range(self.generators_count) ]
SubprocessGenerator.start_in_parallel( self.generators )
self.generator_counter = -1
self.initialized = True
#overridable
def is_initialized(self):
return self.initialized
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
samples, seg_sample_idxs, resolution, face_type, data_format = param
shuffle_idxs = []
bg_shuffle_idxs = []
random_flip = True
rotation_range=[-10,10]
scale_range=[-0.05, 0.05]
tx_range=[-0.05, 0.05]
ty_range=[-0.05, 0.05]
random_bilinear_resize_chance, random_bilinear_resize_max_size_per = 25,75
sharpen_chance, sharpen_kernel_max_size = 25, 5
motion_blur_chance, motion_blur_mb_max_size = 25, 5
gaussian_blur_chance, gaussian_blur_kernel_max_size = 25, 5
random_jpeg_compress_chance = 25
def gen_img_mask(sample):
img = sample.load_bgr()
h,w,c = img.shape
if sample.seg_ie_polys.has_polys():
mask = np.zeros ((h,w,1), dtype=np.float32)
sample.seg_ie_polys.overlay_mask(mask)
elif sample.has_xseg_mask():
mask = sample.get_xseg_mask()
mask[mask < 0.5] = 0.0
mask[mask >= 0.5] = 1.0
else:
raise Exception(f'no mask in sample {sample.filename}')
if face_type == sample.face_type:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 )
mask = cv2.resize( mask, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 )
else:
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 )
mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 )
if len(mask.shape) == 2:
mask = mask[...,None]
return img, mask
bs = self.batch_size
while True:
batches = [ [], [] ]
n_batch = 0
while n_batch < bs:
try:
if len(shuffle_idxs) == 0:
shuffle_idxs = seg_sample_idxs.copy()
np.random.shuffle(shuffle_idxs)
sample = samples[shuffle_idxs.pop()]
img, mask = gen_img_mask(sample)
if np.random.randint(2) == 0:
if len(bg_shuffle_idxs) == 0:
bg_shuffle_idxs = seg_sample_idxs.copy()
np.random.shuffle(bg_shuffle_idxs)
bg_sample = samples[bg_shuffle_idxs.pop()]
bg_img, bg_mask = gen_img_mask(bg_sample)
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[-0.10, 0.10], tx_range=[-0.10, 0.10], ty_range=[-0.10, 0.10] )
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
bg_mask = imagelib.warp_by_params (bg_wp, bg_mask, can_warp=False, can_transform=True, can_flip=True, border_replicate=False)
bg_img = bg_img*(1-bg_mask)
if np.random.randint(2) == 0:
bg_img = imagelib.apply_random_hsv_shift(bg_img)
else:
bg_img = imagelib.apply_random_rgb_levels(bg_img)
c_mask = 1.0 - (1-bg_mask) * (1-mask)
rnd = 0.15 + np.random.uniform()*0.85
img = img*(c_mask) + img*(1-c_mask)*rnd + bg_img*(1-c_mask)*(1-rnd)
warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range )
img = imagelib.warp_by_params (warp_params, img, can_warp=True, can_transform=True, can_flip=True, border_replicate=True)
mask = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False)
img = np.clip(img.astype(np.float32), 0, 1)
mask[mask < 0.5] = 0.0
mask[mask >= 0.5] = 1.0
mask = np.clip(mask, 0, 1)
if np.random.randint(2) == 0:
# random face flare
krn = np.random.randint( resolution//4, resolution )
krn = krn - krn % 2 + 1
img = img + cv2.GaussianBlur(img*mask, (krn,krn), 0)
if np.random.randint(2) == 0:
# random bg flare
krn = np.random.randint( resolution//4, resolution )
krn = krn - krn % 2 + 1
img = img + cv2.GaussianBlur(img*(1-mask), (krn,krn), 0)
if np.random.randint(2) == 0:
img = imagelib.apply_random_hsv_shift(img, mask=sd.random_circle_faded ([resolution,resolution]))
else:
img = imagelib.apply_random_rgb_levels(img, mask=sd.random_circle_faded ([resolution,resolution]))
if np.random.randint(2) == 0:
img = imagelib.apply_random_sharpen( img, sharpen_chance, sharpen_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
else:
img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
if np.random.randint(2) == 0:
img = imagelib.apply_random_nearest_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
else:
img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
img = np.clip(img, 0, 1)
img = imagelib.apply_random_jpeg_compress( img, random_jpeg_compress_chance, mask=sd.random_circle_faded ([resolution,resolution]))
if data_format == "NCHW":
img = np.transpose(img, (2,0,1) )
mask = np.transpose(mask, (2,0,1) )
batches[0].append ( img )
batches[1].append ( mask )
n_batch += 1
except:
io.log_err ( traceback.format_exc() )
yield [ np.array(batch) for batch in batches]
class SegmentedSampleFilterSubprocessor(Subprocessor):
#override
def __init__(self, samples, count_xseg_mask=False ):
self.samples = samples
self.samples_len = len(self.samples)
self.count_xseg_mask = count_xseg_mask
self.idxs = [*range(self.samples_len)]
self.result = []
super().__init__('SegmentedSampleFilterSubprocessor', SegmentedSampleFilterSubprocessor.Cli, 60)
#override
def process_info_generator(self):
for i in range(multiprocessing.cpu_count()):
yield 'CPU%d' % (i), {}, {'samples':self.samples, 'count_xseg_mask':self.count_xseg_mask}
#override
def on_clients_initialized(self):
io.progress_bar ("Filtering", self.samples_len)
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.idxs) > 0:
return self.idxs.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
self.idxs.insert(0, data)
#override
def on_result (self, host_dict, data, result):
idx, is_ok = result
if is_ok:
self.result.append(idx)
io.progress_bar_inc(1)
def get_result(self):
return self.result
class Cli(Subprocessor.Cli):
#overridable optional
def on_initialize(self, client_dict):
self.samples = client_dict['samples']
self.count_xseg_mask = client_dict['count_xseg_mask']
def process_data(self, idx):
if self.count_xseg_mask:
return idx, self.samples[idx].has_xseg_mask()
else:
return idx, self.samples[idx].seg_ie_polys.get_pts_count() != 0
"""
bg_path = None
for path in paths:
bg_path = Path(path) / 'backgrounds'
if bg_path.exists():
break
if bg_path is None:
io.log_info(f'Random backgrounds will not be used. Place no face jpg images to aligned\backgrounds folder. ')
bg_pathes = None
else:
bg_pathes = pathex.get_image_paths(bg_path, image_extensions=['.jpg'], return_Path_class=True)
io.log_info(f'Using {len(bg_pathes)} random backgrounds from {bg_path}')
if bg_pathes is not None:
bg_path = bg_pathes[ np.random.randint(len(bg_pathes)) ]
bg_img = cv2_imread(bg_path)
if bg_img is not None:
bg_img = bg_img.astype(np.float32) / 255.0
bg_img = imagelib.normalize_channels(bg_img, 3)
bg_img = imagelib.random_crop(bg_img, resolution, resolution)
bg_img = cv2.resize(bg_img, (resolution, resolution), interpolation=cv2.INTER_LINEAR)
if np.random.randint(2) == 0:
bg_img = imagelib.apply_random_hsv_shift(bg_img)
else:
bg_img = imagelib.apply_random_rgb_levels(bg_img)
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[0,0], tx_range=[0,0], ty_range=[0,0])
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
bg = img*(1-mask)
fg = img*mask
c_mask = sd.random_circle_faded ([resolution,resolution])
bg = ( bg_img*c_mask + bg*(1-c_mask) )*(1-mask)
img = fg+bg
else:
""" |