File size: 12,872 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import multiprocessing
import pickle
import time
import traceback
from enum import IntEnum

import cv2
import numpy as np
from pathlib import Path
from core import imagelib, mplib, pathex
from core.imagelib import sd
from core.cv2ex import *
from core.interact import interact as io
from core.joblib import Subprocessor, SubprocessGenerator, ThisThreadGenerator
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType)

class SampleGeneratorFaceXSeg(SampleGeneratorBase):
    def __init__ (self, paths, debug=False, batch_size=1, resolution=256, face_type=None,
                        generators_count=4, data_format="NHWC",
                        **kwargs):

        super().__init__(debug, batch_size)
        self.initialized = False

        samples = sum([ SampleLoader.load (SampleType.FACE, path) for path in paths ]  )
        seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples).run()

        if len(seg_sample_idxs) == 0:
            seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples, count_xseg_mask=True).run()
            if len(seg_sample_idxs) == 0:
                raise Exception(f"No segmented faces found.")
            else:
                io.log_info(f"Using {len(seg_sample_idxs)} xseg labeled samples.")
        else:
            io.log_info(f"Using {len(seg_sample_idxs)} segmented samples.")

        if self.debug:
            self.generators_count = 1
        else:
            self.generators_count = max(1, generators_count)

        args = (samples, seg_sample_idxs, resolution, face_type, data_format)
        if self.debug:
            self.generators = [ThisThreadGenerator ( self.batch_func, args )]
        else:
            self.generators = [SubprocessGenerator ( self.batch_func, args, start_now=False ) for i in range(self.generators_count) ]

            SubprocessGenerator.start_in_parallel( self.generators )

        self.generator_counter = -1

        self.initialized = True

    #overridable
    def is_initialized(self):
        return self.initialized

    def __iter__(self):
        return self

    def __next__(self):
        self.generator_counter += 1
        generator = self.generators[self.generator_counter % len(self.generators) ]
        return next(generator)

    def batch_func(self, param ):
        samples, seg_sample_idxs, resolution, face_type, data_format = param

        shuffle_idxs = []
        bg_shuffle_idxs = []

        random_flip = True
        rotation_range=[-10,10]
        scale_range=[-0.05, 0.05]
        tx_range=[-0.05, 0.05]
        ty_range=[-0.05, 0.05]

        random_bilinear_resize_chance, random_bilinear_resize_max_size_per = 25,75
        sharpen_chance, sharpen_kernel_max_size = 25, 5
        motion_blur_chance, motion_blur_mb_max_size = 25, 5
        gaussian_blur_chance, gaussian_blur_kernel_max_size = 25, 5
        random_jpeg_compress_chance = 25

        def gen_img_mask(sample):
            img = sample.load_bgr()
            h,w,c = img.shape

            if sample.seg_ie_polys.has_polys():
                mask = np.zeros ((h,w,1), dtype=np.float32)
                sample.seg_ie_polys.overlay_mask(mask)
            elif sample.has_xseg_mask():
                mask = sample.get_xseg_mask()
                mask[mask < 0.5] = 0.0
                mask[mask >= 0.5] = 1.0
            else:
                raise Exception(f'no mask in sample {sample.filename}')

            if face_type == sample.face_type:
                if w != resolution:
                    img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 )
                    mask = cv2.resize( mask, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 )
            else:
                mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, face_type)
                img  = cv2.warpAffine( img,  mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 )
                mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 )

            if len(mask.shape) == 2:
                mask = mask[...,None]
            return img, mask

        bs = self.batch_size
        while True:
            batches = [ [], [] ]

            n_batch = 0
            while n_batch < bs:
                try:
                    if len(shuffle_idxs) == 0:
                        shuffle_idxs = seg_sample_idxs.copy()
                        np.random.shuffle(shuffle_idxs)
                    sample = samples[shuffle_idxs.pop()]
                    img, mask = gen_img_mask(sample)

                    if np.random.randint(2) == 0:
                        if len(bg_shuffle_idxs) == 0:
                            bg_shuffle_idxs = seg_sample_idxs.copy()
                            np.random.shuffle(bg_shuffle_idxs)
                        bg_sample = samples[bg_shuffle_idxs.pop()]

                        bg_img, bg_mask = gen_img_mask(bg_sample)

                        bg_wp   = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[-0.10, 0.10], tx_range=[-0.10, 0.10], ty_range=[-0.10, 0.10] )
                        bg_img  = imagelib.warp_by_params (bg_wp, bg_img,  can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
                        bg_mask = imagelib.warp_by_params (bg_wp, bg_mask, can_warp=False, can_transform=True, can_flip=True, border_replicate=False)
                        bg_img = bg_img*(1-bg_mask)
                        if np.random.randint(2) == 0:
                            bg_img = imagelib.apply_random_hsv_shift(bg_img)
                        else:
                            bg_img = imagelib.apply_random_rgb_levels(bg_img)

                        c_mask = 1.0 - (1-bg_mask) * (1-mask)
                        rnd = 0.15 + np.random.uniform()*0.85
                        img = img*(c_mask) + img*(1-c_mask)*rnd + bg_img*(1-c_mask)*(1-rnd)

                    warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range )
                    img   = imagelib.warp_by_params (warp_params, img,  can_warp=True, can_transform=True, can_flip=True, border_replicate=True)
                    mask  = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False)

                    img = np.clip(img.astype(np.float32), 0, 1)
                    mask[mask < 0.5] = 0.0
                    mask[mask >= 0.5] = 1.0
                    mask = np.clip(mask, 0, 1)
                    
                    if np.random.randint(2) == 0:
                        # random face flare
                        krn = np.random.randint( resolution//4, resolution )
                        krn = krn - krn % 2 + 1
                        img = img + cv2.GaussianBlur(img*mask, (krn,krn), 0)

                    if np.random.randint(2) == 0:
                        # random bg flare
                        krn = np.random.randint( resolution//4, resolution )
                        krn = krn - krn % 2 + 1
                        img = img + cv2.GaussianBlur(img*(1-mask), (krn,krn), 0)

                    if np.random.randint(2) == 0:
                        img = imagelib.apply_random_hsv_shift(img, mask=sd.random_circle_faded ([resolution,resolution]))
                    else:
                        img = imagelib.apply_random_rgb_levels(img, mask=sd.random_circle_faded ([resolution,resolution]))
                        
                    if np.random.randint(2) == 0:
                        img = imagelib.apply_random_sharpen( img, sharpen_chance, sharpen_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
                    else:
                        img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
                        img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
                        
                    if np.random.randint(2) == 0:
                        img = imagelib.apply_random_nearest_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
                    else:
                        img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
                    img = np.clip(img, 0, 1)

                    img = imagelib.apply_random_jpeg_compress( img, random_jpeg_compress_chance, mask=sd.random_circle_faded ([resolution,resolution]))

                    if data_format == "NCHW":
                        img = np.transpose(img, (2,0,1) )
                        mask = np.transpose(mask, (2,0,1) )

                    batches[0].append ( img )
                    batches[1].append ( mask )

                    n_batch += 1
                except:
                    io.log_err ( traceback.format_exc() )

            yield [ np.array(batch) for batch in batches]

class SegmentedSampleFilterSubprocessor(Subprocessor):
    #override
    def __init__(self, samples, count_xseg_mask=False ):
        self.samples = samples
        self.samples_len = len(self.samples)
        self.count_xseg_mask = count_xseg_mask

        self.idxs = [*range(self.samples_len)]
        self.result = []
        super().__init__('SegmentedSampleFilterSubprocessor', SegmentedSampleFilterSubprocessor.Cli, 60)

    #override
    def process_info_generator(self):
        for i in range(multiprocessing.cpu_count()):
            yield 'CPU%d' % (i), {}, {'samples':self.samples, 'count_xseg_mask':self.count_xseg_mask}

    #override
    def on_clients_initialized(self):
        io.progress_bar ("Filtering", self.samples_len)

    #override
    def on_clients_finalized(self):
        io.progress_bar_close()

    #override
    def get_data(self, host_dict):
        if len (self.idxs) > 0:
            return self.idxs.pop(0)

        return None

    #override
    def on_data_return (self, host_dict, data):
        self.idxs.insert(0, data)

    #override
    def on_result (self, host_dict, data, result):
        idx, is_ok = result
        if is_ok:
            self.result.append(idx)
        io.progress_bar_inc(1)
    def get_result(self):
        return self.result

    class Cli(Subprocessor.Cli):
        #overridable optional
        def on_initialize(self, client_dict):
            self.samples = client_dict['samples']
            self.count_xseg_mask = client_dict['count_xseg_mask']

        def process_data(self, idx):
            if self.count_xseg_mask:
                return idx, self.samples[idx].has_xseg_mask()
            else:
                return idx, self.samples[idx].seg_ie_polys.get_pts_count() != 0

"""
  bg_path = None
        for path in paths:
            bg_path = Path(path) / 'backgrounds'
            if bg_path.exists():

                break
        if bg_path is None:
            io.log_info(f'Random backgrounds will not be used. Place no face jpg images to aligned\backgrounds folder. ')
            bg_pathes = None
        else:
            bg_pathes = pathex.get_image_paths(bg_path, image_extensions=['.jpg'], return_Path_class=True)
            io.log_info(f'Using {len(bg_pathes)} random backgrounds from {bg_path}')

if bg_pathes is not None:
            bg_path = bg_pathes[ np.random.randint(len(bg_pathes)) ]

            bg_img = cv2_imread(bg_path)
            if bg_img is not None:
                bg_img = bg_img.astype(np.float32) / 255.0
                bg_img = imagelib.normalize_channels(bg_img, 3)

                bg_img = imagelib.random_crop(bg_img, resolution, resolution)
                bg_img = cv2.resize(bg_img, (resolution, resolution), interpolation=cv2.INTER_LINEAR)

            if np.random.randint(2) == 0:
                bg_img = imagelib.apply_random_hsv_shift(bg_img)
            else:
                bg_img = imagelib.apply_random_rgb_levels(bg_img)

            bg_wp   = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[0,0], tx_range=[0,0], ty_range=[0,0])
            bg_img  = imagelib.warp_by_params (bg_wp, bg_img,  can_warp=False, can_transform=True, can_flip=True, border_replicate=True)

            bg = img*(1-mask)
            fg = img*mask

            c_mask = sd.random_circle_faded ([resolution,resolution])
            bg = ( bg_img*c_mask + bg*(1-c_mask) )*(1-mask)

            img = fg+bg

        else:
"""