|
from core.leras import nn |
|
tf = nn.tf |
|
|
|
class AdaIN(nn.LayerBase): |
|
""" |
|
""" |
|
def __init__(self, in_ch, mlp_ch, kernel_initializer=None, dtype=None, **kwargs): |
|
self.in_ch = in_ch |
|
self.mlp_ch = mlp_ch |
|
self.kernel_initializer = kernel_initializer |
|
|
|
if dtype is None: |
|
dtype = nn.floatx |
|
self.dtype = dtype |
|
|
|
super().__init__(**kwargs) |
|
|
|
def build_weights(self): |
|
kernel_initializer = self.kernel_initializer |
|
if kernel_initializer is None: |
|
kernel_initializer = tf.initializers.he_normal() |
|
|
|
self.weight1 = tf.get_variable("weight1", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer) |
|
self.bias1 = tf.get_variable("bias1", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros()) |
|
self.weight2 = tf.get_variable("weight2", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer) |
|
self.bias2 = tf.get_variable("bias2", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros()) |
|
|
|
def get_weights(self): |
|
return [self.weight1, self.bias1, self.weight2, self.bias2] |
|
|
|
def forward(self, inputs): |
|
x, mlp = inputs |
|
|
|
gamma = tf.matmul(mlp, self.weight1) |
|
gamma = tf.add(gamma, tf.reshape(self.bias1, (1,self.in_ch) ) ) |
|
|
|
beta = tf.matmul(mlp, self.weight2) |
|
beta = tf.add(beta, tf.reshape(self.bias2, (1,self.in_ch) ) ) |
|
|
|
|
|
if nn.data_format == "NHWC": |
|
shape = (-1,1,1,self.in_ch) |
|
else: |
|
shape = (-1,self.in_ch,1,1) |
|
|
|
x_mean = tf.reduce_mean(x, axis=nn.conv2d_spatial_axes, keepdims=True ) |
|
x_std = tf.math.reduce_std(x, axis=nn.conv2d_spatial_axes, keepdims=True ) + 1e-5 |
|
|
|
x = (x - x_mean) / x_std |
|
x *= tf.reshape(gamma, shape) |
|
|
|
x += tf.reshape(beta, shape) |
|
|
|
return x |
|
|
|
nn.AdaIN = AdaIN |