|
from core.leras import nn |
|
tf = nn.tf |
|
|
|
class ScaleAdd(nn.LayerBase): |
|
def __init__(self, ch, dtype=None, **kwargs): |
|
if dtype is None: |
|
dtype = nn.floatx |
|
self.dtype = dtype |
|
self.ch = ch |
|
|
|
super().__init__(**kwargs) |
|
|
|
def build_weights(self): |
|
self.weight = tf.get_variable("weight",(self.ch,), dtype=self.dtype, initializer=tf.initializers.zeros() ) |
|
|
|
def get_weights(self): |
|
return [self.weight] |
|
|
|
def forward(self, inputs): |
|
if nn.data_format == "NHWC": |
|
shape = (1,1,1,self.ch) |
|
else: |
|
shape = (1,self.ch,1,1) |
|
|
|
weight = tf.reshape ( self.weight, shape ) |
|
|
|
x0, x1 = inputs |
|
x = x0 + x1*weight |
|
|
|
return x |
|
nn.ScaleAdd = ScaleAdd |