JeffP111 commited on
Commit
f087f56
·
verified ·
1 Parent(s): 360c942

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-3B-Simple-RL
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-3B-Simple-RL
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="JeffP111/Qwen-2.5-3B-Simple-RL", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/thishere/huggingface/runs/hb2t1otd)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 25.241294363718474,
4
+ "train_runtime": 70314.3192,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.32,
7
+ "train_steps_per_second": 0.003
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 70,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f23f2415a73267021cb987218d83f4149bbdfd00fa6cee2471eeaf07e52bb19
3
+ size 4957560304
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:563333255c7a5fe8ba1defe1a9337e6c6c920c8e5a7f27c385ce9c8fdbc2c0d3
3
+ size 1836696752
model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6794207232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 25.241294363718474,
4
+ "train_runtime": 70314.3192,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.32,
7
+ "train_steps_per_second": 0.003
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 40,
6
+ "global_step": 201,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 547.1242248535157,
13
+ "epoch": 0.07462686567164178,
14
+ "grad_norm": 1.2733972072601318,
15
+ "kl": 0.00047130584716796874,
16
+ "learning_rate": 7.142857142857143e-07,
17
+ "loss": 0.0,
18
+ "reward": 0.5517856992781163,
19
+ "reward_std": 0.27616733238101004,
20
+ "rewards/accuracy_reward": 0.3724489748477936,
21
+ "rewards/format_reward": 0.17933673106599599,
22
+ "step": 5,
23
+ "success_rate": 0.37244899198412895
24
+ },
25
+ {
26
+ "completion_length": 460.88060302734374,
27
+ "epoch": 0.14925373134328357,
28
+ "grad_norm": 4.886548042297363,
29
+ "kl": 0.024450111389160156,
30
+ "learning_rate": 1.4285714285714286e-06,
31
+ "loss": 0.001,
32
+ "reward": 0.6818877421319485,
33
+ "reward_std": 0.2652753606438637,
34
+ "rewards/accuracy_reward": 0.3150510139763355,
35
+ "rewards/format_reward": 0.36683672592043876,
36
+ "step": 10,
37
+ "success_rate": 0.3150510285049677
38
+ },
39
+ {
40
+ "completion_length": 488.90407409667966,
41
+ "epoch": 0.22388059701492538,
42
+ "grad_norm": 0.48002028465270996,
43
+ "kl": 0.018406105041503907,
44
+ "learning_rate": 2.142857142857143e-06,
45
+ "loss": 0.0007,
46
+ "reward": 0.6711734563112259,
47
+ "reward_std": 0.24843686558306216,
48
+ "rewards/accuracy_reward": 0.3446428500115871,
49
+ "rewards/format_reward": 0.32653060741722584,
50
+ "step": 15,
51
+ "success_rate": 0.34464287348091605
52
+ },
53
+ {
54
+ "completion_length": 490.06836166381834,
55
+ "epoch": 0.29850746268656714,
56
+ "grad_norm": 0.5253956317901611,
57
+ "kl": 0.009164047241210938,
58
+ "learning_rate": 2.8571428571428573e-06,
59
+ "loss": 0.0004,
60
+ "reward": 0.7178571283817291,
61
+ "reward_std": 0.26088091973215344,
62
+ "rewards/accuracy_reward": 0.40714284889400004,
63
+ "rewards/format_reward": 0.31071427930146456,
64
+ "step": 20,
65
+ "success_rate": 0.40714286640286446
66
+ },
67
+ {
68
+ "completion_length": 342.0505027770996,
69
+ "epoch": 0.373134328358209,
70
+ "grad_norm": 0.4979659616947174,
71
+ "kl": 0.0306243896484375,
72
+ "learning_rate": 2.9963460753897363e-06,
73
+ "loss": 0.0012,
74
+ "reward": 0.9278060972690583,
75
+ "reward_std": 0.24459648579359056,
76
+ "rewards/accuracy_reward": 0.18979591503739357,
77
+ "rewards/format_reward": 0.7380101881921292,
78
+ "step": 25,
79
+ "success_rate": 0.1897959278896451
80
+ },
81
+ {
82
+ "completion_length": 323.44387130737306,
83
+ "epoch": 0.44776119402985076,
84
+ "grad_norm": 0.9019961357116699,
85
+ "kl": 0.0350311279296875,
86
+ "learning_rate": 2.981532510892707e-06,
87
+ "loss": 0.0014,
88
+ "reward": 0.9882652848958969,
89
+ "reward_std": 0.2664802324026823,
90
+ "rewards/accuracy_reward": 0.15943877436220646,
91
+ "rewards/format_reward": 0.8288265079259872,
92
+ "step": 30,
93
+ "success_rate": 0.15943878153339028
94
+ },
95
+ {
96
+ "completion_length": 281.84744491577146,
97
+ "epoch": 0.5223880597014925,
98
+ "grad_norm": 0.42541709542274475,
99
+ "kl": 0.046868896484375,
100
+ "learning_rate": 2.9554435894139947e-06,
101
+ "loss": 0.0019,
102
+ "reward": 1.116326493024826,
103
+ "reward_std": 0.28026170562952757,
104
+ "rewards/accuracy_reward": 0.19030611962080002,
105
+ "rewards/format_reward": 0.9260203883051872,
106
+ "step": 35,
107
+ "success_rate": 0.19030613116919995
108
+ },
109
+ {
110
+ "completion_length": 280.4670871734619,
111
+ "epoch": 0.5970149253731343,
112
+ "grad_norm": 0.786392331123352,
113
+ "kl": 0.054290771484375,
114
+ "learning_rate": 2.9182778633989753e-06,
115
+ "loss": 0.0022,
116
+ "reward": 1.1989795714616776,
117
+ "reward_std": 0.3117813114076853,
118
+ "rewards/accuracy_reward": 0.24183672983199359,
119
+ "rewards/format_reward": 0.957142835855484,
120
+ "step": 40,
121
+ "success_rate": 0.24183674417436124
122
+ },
123
+ {
124
+ "epoch": 0.5970149253731343,
125
+ "eval_completion_length": 256.7967397167696,
126
+ "eval_kl": 0.06267662687674581,
127
+ "eval_loss": 0.002505573211237788,
128
+ "eval_reward": 1.2279956347449532,
129
+ "eval_reward_std": 0.283521942211596,
130
+ "eval_rewards/accuracy_reward": 0.2540759276182458,
131
+ "eval_rewards/format_reward": 0.9739197237864553,
132
+ "eval_runtime": 5454.0827,
133
+ "eval_samples_per_second": 0.917,
134
+ "eval_steps_per_second": 0.066,
135
+ "eval_success_rate": 0.2544749851166869,
136
+ "step": 40
137
+ },
138
+ {
139
+ "completion_length": 237.62269897460936,
140
+ "epoch": 0.6716417910447762,
141
+ "grad_norm": 0.7149950861930847,
142
+ "kl": 0.0769775390625,
143
+ "learning_rate": 2.8703181864639013e-06,
144
+ "loss": 0.0031,
145
+ "reward": 1.2594387471675872,
146
+ "reward_std": 0.28514467738568783,
147
+ "rewards/accuracy_reward": 0.2785714233294129,
148
+ "rewards/format_reward": 0.9808673411607742,
149
+ "step": 45,
150
+ "success_rate": 0.2785714427009225
151
+ },
152
+ {
153
+ "completion_length": 309.43800468444823,
154
+ "epoch": 0.746268656716418,
155
+ "grad_norm": 2.802035093307495,
156
+ "kl": 0.081781005859375,
157
+ "learning_rate": 2.811929560709094e-06,
158
+ "loss": 0.0033,
159
+ "reward": 1.3290816009044648,
160
+ "reward_std": 0.3365088116377592,
161
+ "rewards/accuracy_reward": 0.3614795859903097,
162
+ "rewards/format_reward": 0.9676020219922066,
163
+ "step": 50,
164
+ "success_rate": 0.3596938900649548
165
+ },
166
+ {
167
+ "completion_length": 303.08392372131345,
168
+ "epoch": 0.8208955223880597,
169
+ "grad_norm": 0.3051517605781555,
170
+ "kl": 0.075457763671875,
171
+ "learning_rate": 2.7435563588325624e-06,
172
+ "loss": 0.003,
173
+ "reward": 1.3415815979242325,
174
+ "reward_std": 0.3468840003013611,
175
+ "rewards/accuracy_reward": 0.3770408075302839,
176
+ "rewards/format_reward": 0.9645407989621162,
177
+ "step": 55,
178
+ "success_rate": 0.3752551130950451
179
+ },
180
+ {
181
+ "completion_length": 294.10815811157227,
182
+ "epoch": 0.8955223880597015,
183
+ "grad_norm": 0.33523619174957275,
184
+ "kl": 0.097998046875,
185
+ "learning_rate": 2.6657189421854562e-06,
186
+ "loss": 0.0039,
187
+ "reward": 1.3653060972690583,
188
+ "reward_std": 0.33864556923508643,
189
+ "rewards/accuracy_reward": 0.38443876840174196,
190
+ "rewards/format_reward": 0.9808673366904259,
191
+ "step": 60,
192
+ "success_rate": 0.3844387885183096
193
+ },
194
+ {
195
+ "completion_length": 304.046932220459,
196
+ "epoch": 0.9701492537313433,
197
+ "grad_norm": 0.3474382162094116,
198
+ "kl": 0.096484375,
199
+ "learning_rate": 2.5790097005079765e-06,
200
+ "loss": 0.0039,
201
+ "reward": 1.4303571164608002,
202
+ "reward_std": 0.32698816806077957,
203
+ "rewards/accuracy_reward": 0.454846927523613,
204
+ "rewards/format_reward": 0.9755101934075355,
205
+ "step": 65,
206
+ "success_rate": 0.4548469439148903
207
+ },
208
+ {
209
+ "completion_length": 348.61254768371583,
210
+ "epoch": 1.044776119402985,
211
+ "grad_norm": 0.28319722414016724,
212
+ "kl": 0.0887451171875,
213
+ "learning_rate": 2.484088543485761e-06,
214
+ "loss": 0.0035,
215
+ "reward": 1.4494387701153755,
216
+ "reward_std": 0.34128306433558464,
217
+ "rewards/accuracy_reward": 0.48418366685509684,
218
+ "rewards/format_reward": 0.9652550905942917,
219
+ "step": 70,
220
+ "success_rate": 0.5017857238650322
221
+ },
222
+ {
223
+ "completion_length": 374.4933601379395,
224
+ "epoch": 1.1194029850746268,
225
+ "grad_norm": 0.27081194519996643,
226
+ "kl": 25395.28706665039,
227
+ "learning_rate": 2.3816778784387097e-06,
228
+ "loss": 1014.577,
229
+ "reward": 1.4698979407548904,
230
+ "reward_std": 0.3440066184848547,
231
+ "rewards/accuracy_reward": 0.5155612148344517,
232
+ "rewards/format_reward": 0.9543367087841034,
233
+ "step": 75,
234
+ "success_rate": 0.5155612342059612
235
+ },
236
+ {
237
+ "completion_length": 361.42677841186526,
238
+ "epoch": 1.1940298507462686,
239
+ "grad_norm": 0.31254705786705017,
240
+ "kl": 0.087762451171875,
241
+ "learning_rate": 2.2725571123650813e-06,
242
+ "loss": 0.0035,
243
+ "reward": 1.5135203808546067,
244
+ "reward_std": 0.35050575956702235,
245
+ "rewards/accuracy_reward": 0.566326516866684,
246
+ "rewards/format_reward": 0.947193855047226,
247
+ "step": 80,
248
+ "success_rate": 0.5645408242940902
249
+ },
250
+ {
251
+ "epoch": 1.1940298507462686,
252
+ "eval_completion_length": 375.1230107738985,
253
+ "eval_kl": 0.2485719819308659,
254
+ "eval_loss": 0.009942025877535343,
255
+ "eval_reward": 1.4252650491352188,
256
+ "eval_reward_std": 0.35333527712016133,
257
+ "eval_rewards/accuracy_reward": 0.4842093172769307,
258
+ "eval_rewards/format_reward": 0.9410557287365364,
259
+ "eval_runtime": 6454.9469,
260
+ "eval_samples_per_second": 0.775,
261
+ "eval_steps_per_second": 0.055,
262
+ "eval_success_rate": 0.485406461291473,
263
+ "step": 80
264
+ },
265
+ {
266
+ "completion_length": 378.264786529541,
267
+ "epoch": 1.2686567164179103,
268
+ "grad_norm": 0.25367024540901184,
269
+ "kl": 0.08892822265625,
270
+ "learning_rate": 2.157556720183616e-06,
271
+ "loss": 0.0036,
272
+ "reward": 1.4543367117643355,
273
+ "reward_std": 0.3721345618367195,
274
+ "rewards/accuracy_reward": 0.5137754999101162,
275
+ "rewards/format_reward": 0.9405611962080002,
276
+ "step": 85,
277
+ "success_rate": 0.5137755192816258
278
+ },
279
+ {
280
+ "completion_length": 377.1609634399414,
281
+ "epoch": 1.3432835820895521,
282
+ "grad_norm": 0.2705287039279938,
283
+ "kl": 0.30084228515625,
284
+ "learning_rate": 2.03755192431795e-06,
285
+ "loss": 0.012,
286
+ "reward": 1.5015305757522583,
287
+ "reward_std": 0.34179753065109253,
288
+ "rewards/accuracy_reward": 0.5466836676001549,
289
+ "rewards/format_reward": 0.954846915602684,
290
+ "step": 90,
291
+ "success_rate": 0.5466836795210839
292
+ },
293
+ {
294
+ "completion_length": 395.2339202880859,
295
+ "epoch": 1.417910447761194,
296
+ "grad_norm": 0.2481299340724945,
297
+ "kl": 0.08546142578125,
298
+ "learning_rate": 1.9134560337254986e-06,
299
+ "loss": 0.0034,
300
+ "reward": 1.5122448593378066,
301
+ "reward_std": 0.32668328285217285,
302
+ "rewards/accuracy_reward": 0.5599489718675613,
303
+ "rewards/format_reward": 0.9522958919405937,
304
+ "step": 95,
305
+ "success_rate": 0.559948992729187
306
+ },
307
+ {
308
+ "completion_length": 404.2803482055664,
309
+ "epoch": 1.4925373134328357,
310
+ "grad_norm": 0.22587481141090393,
311
+ "kl": 0.08536376953125,
312
+ "learning_rate": 1.7862134930648174e-06,
313
+ "loss": 0.0034,
314
+ "reward": 1.5109693586826325,
315
+ "reward_std": 0.3110779445618391,
316
+ "rewards/accuracy_reward": 0.5604591690003872,
317
+ "rewards/format_reward": 0.9505101799964905,
318
+ "step": 100,
319
+ "success_rate": 0.560459190607071
320
+ },
321
+ {
322
+ "completion_length": 446.25024871826173,
323
+ "epoch": 1.5671641791044775,
324
+ "grad_norm": 0.2071794718503952,
325
+ "kl": 0.077789306640625,
326
+ "learning_rate": 1.6567926949014804e-06,
327
+ "loss": 0.0031,
328
+ "reward": 1.521683645248413,
329
+ "reward_std": 0.32725758776068686,
330
+ "rewards/accuracy_reward": 0.5826530493795872,
331
+ "rewards/format_reward": 0.9390305906534195,
332
+ "step": 105,
333
+ "success_rate": 0.5826530683785677
334
+ },
335
+ {
336
+ "completion_length": 444.8515205383301,
337
+ "epoch": 1.6417910447761193,
338
+ "grad_norm": 0.2457750141620636,
339
+ "kl": 0.081201171875,
340
+ "learning_rate": 1.5261786096559255e-06,
341
+ "loss": 0.0032,
342
+ "reward": 1.5280611962080002,
343
+ "reward_std": 0.33711482025682926,
344
+ "rewards/accuracy_reward": 0.5818877436220646,
345
+ "rewards/format_reward": 0.9461734414100647,
346
+ "step": 110,
347
+ "success_rate": 0.5818877592682838
348
+ },
349
+ {
350
+ "completion_length": 428.1119789123535,
351
+ "epoch": 1.716417910447761,
352
+ "grad_norm": 0.8355852365493774,
353
+ "kl": 0.08641357421875,
354
+ "learning_rate": 1.395365289383812e-06,
355
+ "loss": 0.0035,
356
+ "reward": 1.5198979318141936,
357
+ "reward_std": 0.33952501937747004,
358
+ "rewards/accuracy_reward": 0.5668367221951485,
359
+ "rewards/format_reward": 0.9530612006783485,
360
+ "step": 115,
361
+ "success_rate": 0.5668367445468903
362
+ },
363
+ {
364
+ "completion_length": 416.2086639404297,
365
+ "epoch": 1.7910447761194028,
366
+ "grad_norm": 0.24691729247570038,
367
+ "kl": 0.0869140625,
368
+ "learning_rate": 1.2653483024396534e-06,
369
+ "loss": 0.0035,
370
+ "reward": 1.5033163011074067,
371
+ "reward_std": 0.33274373821914194,
372
+ "rewards/accuracy_reward": 0.5446428425610066,
373
+ "rewards/format_reward": 0.9586734384298324,
374
+ "step": 120,
375
+ "success_rate": 0.5446428678929806
376
+ },
377
+ {
378
+ "epoch": 1.7910447761194028,
379
+ "eval_completion_length": 416.68637263974665,
380
+ "eval_kl": 0.08460700178945531,
381
+ "eval_loss": 0.0033832318149507046,
382
+ "eval_reward": 1.4522859107848651,
383
+ "eval_reward_std": 0.33377148831190345,
384
+ "eval_rewards/accuracy_reward": 0.4971211837739918,
385
+ "eval_rewards/format_reward": 0.9551647285509376,
386
+ "eval_runtime": 6690.2624,
387
+ "eval_samples_per_second": 0.747,
388
+ "eval_steps_per_second": 0.054,
389
+ "eval_success_rate": 0.49851784963348056,
390
+ "step": 120
391
+ },
392
+ {
393
+ "completion_length": 399.90585861206057,
394
+ "epoch": 1.8656716417910446,
395
+ "grad_norm": 0.2619114816188812,
396
+ "kl": 0.08975830078125,
397
+ "learning_rate": 1.1371171566004986e-06,
398
+ "loss": 0.0036,
399
+ "reward": 1.4979591608047484,
400
+ "reward_std": 0.32781863324344157,
401
+ "rewards/accuracy_reward": 0.5415816225111485,
402
+ "rewards/format_reward": 0.9563775300979614,
403
+ "step": 125,
404
+ "success_rate": 0.5415816411376
405
+ },
406
+ {
407
+ "completion_length": 413.0073921203613,
408
+ "epoch": 1.9402985074626866,
409
+ "grad_norm": 0.31122443079948425,
410
+ "kl": 0.0883056640625,
411
+ "learning_rate": 1.0116477683142654e-06,
412
+ "loss": 0.0035,
413
+ "reward": 1.5224489539861679,
414
+ "reward_std": 0.32416500747203825,
415
+ "rewards/accuracy_reward": 0.5683673366904258,
416
+ "rewards/format_reward": 0.954081603884697,
417
+ "step": 130,
418
+ "success_rate": 0.568367350846529
419
+ },
420
+ {
421
+ "completion_length": 425.88346633911135,
422
+ "epoch": 2.014925373134328,
423
+ "grad_norm": 0.20976552367210388,
424
+ "kl": 0.080792236328125,
425
+ "learning_rate": 8.898950353863e-07,
426
+ "loss": 0.0032,
427
+ "reward": 1.5138265073299408,
428
+ "reward_std": 0.3204653847962618,
429
+ "rewards/accuracy_reward": 0.5654081603512168,
430
+ "rewards/format_reward": 0.9484183505177498,
431
+ "step": 135,
432
+ "success_rate": 0.5627551212906837
433
+ },
434
+ {
435
+ "completion_length": 431.6691268920898,
436
+ "epoch": 2.08955223880597,
437
+ "grad_norm": 0.24750804901123047,
438
+ "kl": 0.082379150390625,
439
+ "learning_rate": 7.727855696304945e-07,
440
+ "loss": 0.0033,
441
+ "reward": 1.506122413277626,
442
+ "reward_std": 0.32942725978791715,
443
+ "rewards/accuracy_reward": 0.5604591719806195,
444
+ "rewards/format_reward": 0.9456632405519485,
445
+ "step": 140,
446
+ "success_rate": 0.5586734853684903
447
+ },
448
+ {
449
+ "completion_length": 438.63060150146487,
450
+ "epoch": 2.1641791044776117,
451
+ "grad_norm": 0.25727197527885437,
452
+ "kl": 0.0776123046875,
453
+ "learning_rate": 6.6121064479388e-07,
454
+ "loss": 0.0031,
455
+ "reward": 1.4864795625209808,
456
+ "reward_std": 0.328120681270957,
457
+ "rewards/accuracy_reward": 0.5380101919174194,
458
+ "rewards/format_reward": 0.9484693706035614,
459
+ "step": 145,
460
+ "success_rate": 0.5380102179944515
461
+ },
462
+ {
463
+ "completion_length": 403.204328918457,
464
+ "epoch": 2.2388059701492535,
465
+ "grad_norm": 0.24068014323711395,
466
+ "kl": 0.08330078125,
467
+ "learning_rate": 5.560194134252441e-07,
468
+ "loss": 0.0033,
469
+ "reward": 1.5372448682785034,
470
+ "reward_std": 0.3228706333786249,
471
+ "rewards/accuracy_reward": 0.5795918248593808,
472
+ "rewards/format_reward": 0.9576530396938324,
473
+ "step": 150,
474
+ "success_rate": 0.5795918427407741
475
+ },
476
+ {
477
+ "completion_length": 407.8196342468262,
478
+ "epoch": 2.3134328358208958,
479
+ "grad_norm": 0.2765465974807739,
480
+ "kl": 0.0848876953125,
481
+ "learning_rate": 4.5801244431150397e-07,
482
+ "loss": 0.0034,
483
+ "reward": 1.5224489510059356,
484
+ "reward_std": 0.313472930341959,
485
+ "rewards/accuracy_reward": 0.5660714194178581,
486
+ "rewards/format_reward": 0.9563775330781936,
487
+ "step": 155,
488
+ "success_rate": 0.5660714313387871
489
+ },
490
+ {
491
+ "completion_length": 392.9127471923828,
492
+ "epoch": 2.388059701492537,
493
+ "grad_norm": 0.28657880425453186,
494
+ "kl": 0.09124755859375,
495
+ "learning_rate": 3.67935629665842e-07,
496
+ "loss": 0.0036,
497
+ "reward": 1.561479565501213,
498
+ "reward_std": 0.3107341818511486,
499
+ "rewards/accuracy_reward": 0.5979591712355614,
500
+ "rewards/format_reward": 0.9635203838348388,
501
+ "step": 160,
502
+ "success_rate": 0.5979591906070709
503
+ },
504
+ {
505
+ "epoch": 2.388059701492537,
506
+ "eval_completion_length": 415.15222543045127,
507
+ "eval_kl": 0.08421828626920391,
508
+ "eval_loss": 0.003366992576047778,
509
+ "eval_reward": 1.4807034238090728,
510
+ "eval_reward_std": 0.3203208099780136,
511
+ "eval_rewards/accuracy_reward": 0.5245125879788531,
512
+ "eval_rewards/format_reward": 0.956190837162167,
513
+ "eval_runtime": 6690.7517,
514
+ "eval_samples_per_second": 0.747,
515
+ "eval_steps_per_second": 0.054,
516
+ "eval_success_rate": 0.5258094906890193,
517
+ "step": 160
518
+ },
519
+ {
520
+ "completion_length": 432.94667587280276,
521
+ "epoch": 2.4626865671641793,
522
+ "grad_norm": 0.23113694787025452,
523
+ "kl": 0.0843994140625,
524
+ "learning_rate": 2.86474508437579e-07,
525
+ "loss": 0.0034,
526
+ "reward": 1.4971938461065293,
527
+ "reward_std": 0.3238256432116032,
528
+ "rewards/accuracy_reward": 0.5499999865889549,
529
+ "rewards/format_reward": 0.9471938535571098,
530
+ "step": 165,
531
+ "success_rate": 0.5499999992549419
532
+ },
533
+ {
534
+ "completion_length": 414.23238906860354,
535
+ "epoch": 2.5373134328358207,
536
+ "grad_norm": 0.2992941439151764,
537
+ "kl": 0.087384033203125,
538
+ "learning_rate": 2.1424904894683168e-07,
539
+ "loss": 0.0035,
540
+ "reward": 1.5561224222183228,
541
+ "reward_std": 0.3134998256340623,
542
+ "rewards/accuracy_reward": 0.600255086272955,
543
+ "rewards/format_reward": 0.9558673143386841,
544
+ "step": 170,
545
+ "success_rate": 0.5984694063663483
546
+ },
547
+ {
548
+ "completion_length": 438.1839202880859,
549
+ "epoch": 2.611940298507463,
550
+ "grad_norm": 0.2166847288608551,
551
+ "kl": 0.085552978515625,
552
+ "learning_rate": 1.5180893055124977e-07,
553
+ "loss": 0.0034,
554
+ "reward": 1.5079081356525421,
555
+ "reward_std": 0.33949046954512596,
556
+ "rewards/accuracy_reward": 0.5670918263494968,
557
+ "rewards/format_reward": 0.9408163040876388,
558
+ "step": 175,
559
+ "success_rate": 0.5670918501913548
560
+ },
561
+ {
562
+ "completion_length": 424.2168281555176,
563
+ "epoch": 2.6865671641791042,
564
+ "grad_norm": 0.21476835012435913,
565
+ "kl": 0.08350830078125,
566
+ "learning_rate": 9.962936025419756e-08,
567
+ "loss": 0.0033,
568
+ "reward": 1.5306122213602067,
569
+ "reward_std": 0.31606815941631794,
570
+ "rewards/accuracy_reward": 0.5747448861598968,
571
+ "rewards/format_reward": 0.9558673217892647,
572
+ "step": 180,
573
+ "success_rate": 0.5747449062764645
574
+ },
575
+ {
576
+ "completion_length": 418.3198890686035,
577
+ "epoch": 2.7611940298507465,
578
+ "grad_norm": 0.2472531795501709,
579
+ "kl": 0.081756591796875,
580
+ "learning_rate": 5.810745609252166e-08,
581
+ "loss": 0.0033,
582
+ "reward": 1.5512754768133163,
583
+ "reward_std": 0.29889940060675146,
584
+ "rewards/accuracy_reward": 0.5910714209079743,
585
+ "rewards/format_reward": 0.9602040618658065,
586
+ "step": 185,
587
+ "success_rate": 0.5910714328289032
588
+ },
589
+ {
590
+ "completion_length": 431.39743728637694,
591
+ "epoch": 2.835820895522388,
592
+ "grad_norm": 0.2179958075284958,
593
+ "kl": 0.0802490234375,
594
+ "learning_rate": 2.7559224828504036e-08,
595
+ "loss": 0.0032,
596
+ "reward": 1.5283162951469422,
597
+ "reward_std": 0.3320562928915024,
598
+ "rewards/accuracy_reward": 0.5762754924595356,
599
+ "rewards/format_reward": 0.9520407900214195,
600
+ "step": 190,
601
+ "success_rate": 0.5762755177915097
602
+ },
603
+ {
604
+ "completion_length": 427.4851936340332,
605
+ "epoch": 2.91044776119403,
606
+ "grad_norm": 0.235799178481102,
607
+ "kl": 0.0825927734375,
608
+ "learning_rate": 8.217156947590065e-09,
609
+ "loss": 0.0033,
610
+ "reward": 1.5198979258537293,
611
+ "reward_std": 0.30454444214701654,
612
+ "rewards/accuracy_reward": 0.5729591682553291,
613
+ "rewards/format_reward": 0.9469387531280518,
614
+ "step": 195,
615
+ "success_rate": 0.5729591898620129
616
+ },
617
+ {
618
+ "completion_length": 437.469376373291,
619
+ "epoch": 2.9850746268656714,
620
+ "grad_norm": 0.22140200436115265,
621
+ "kl": 0.079302978515625,
622
+ "learning_rate": 2.2845726541309565e-10,
623
+ "loss": 0.0032,
624
+ "reward": 1.5232142567634583,
625
+ "reward_std": 0.32379055954515934,
626
+ "rewards/accuracy_reward": 0.5744897864758969,
627
+ "rewards/format_reward": 0.9487244680523872,
628
+ "step": 200,
629
+ "success_rate": 0.5744898058474064
630
+ },
631
+ {
632
+ "epoch": 2.9850746268656714,
633
+ "eval_completion_length": 427.15005846929284,
634
+ "eval_kl": 0.10578449611557263,
635
+ "eval_loss": 0.004237522836774588,
636
+ "eval_reward": 1.480674920468357,
637
+ "eval_reward_std": 0.32418302708830915,
638
+ "eval_rewards/accuracy_reward": 0.528075465443414,
639
+ "eval_rewards/format_reward": 0.9525994578553312,
640
+ "eval_runtime": 6859.1519,
641
+ "eval_samples_per_second": 0.729,
642
+ "eval_steps_per_second": 0.052,
643
+ "eval_success_rate": 0.5293723670505611,
644
+ "step": 200
645
+ },
646
+ {
647
+ "completion_length": 396.71250343322754,
648
+ "epoch": 3.0,
649
+ "kl": 0.073760986328125,
650
+ "reward": 1.6749999970197678,
651
+ "reward_std": 0.246222835034132,
652
+ "rewards/accuracy_reward": 0.6750000044703484,
653
+ "rewards/format_reward": 1.0,
654
+ "step": 201,
655
+ "success_rate": 0.5982142873108387,
656
+ "total_flos": 0.0,
657
+ "train_loss": 25.241294363718474,
658
+ "train_runtime": 70314.3192,
659
+ "train_samples_per_second": 0.32,
660
+ "train_steps_per_second": 0.003
661
+ }
662
+ ],
663
+ "logging_steps": 5,
664
+ "max_steps": 201,
665
+ "num_input_tokens_seen": 0,
666
+ "num_train_epochs": 3,
667
+ "save_steps": 500,
668
+ "stateful_callbacks": {
669
+ "TrainerControl": {
670
+ "args": {
671
+ "should_epoch_stop": false,
672
+ "should_evaluate": false,
673
+ "should_log": false,
674
+ "should_save": false,
675
+ "should_training_stop": false
676
+ },
677
+ "attributes": {}
678
+ }
679
+ },
680
+ "total_flos": 0.0,
681
+ "train_batch_size": 2,
682
+ "trial_name": null,
683
+ "trial_params": null
684
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56f92a6078ee66651e8bd53b0502dbf50c243602700a038e0501efc25e450095
3
+ size 7416
vocab.json ADDED
The diff for this file is too large to render. See raw diff