Jethuestad commited on
Commit
44d3808
·
1 Parent(s): bf90a67

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_1_0
7
+ model-index:
8
+ - name: dat259-wav2vec2-en2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # dat259-wav2vec2-en2
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_1_0 dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.4176
20
+ - Wer: 0.5532
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 20
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 3.7147 | 3.64 | 400 | 2.0524 | 0.9310 |
56
+ | 0.5925 | 7.27 | 800 | 1.3358 | 0.6120 |
57
+ | 0.225 | 10.91 | 1200 | 1.3472 | 0.5807 |
58
+ | 0.1444 | 14.55 | 1600 | 1.4857 | 0.5672 |
59
+ | 0.1072 | 18.18 | 2000 | 1.4176 | 0.5532 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.21.1
65
+ - Pytorch 1.12.1+cu102
66
+ - Datasets 2.4.0
67
+ - Tokenizers 0.12.1