End of training
Browse files- README.md +45 -179
- all_results.json +21 -0
- config.json +1 -1
- eval_results.json +11 -0
- train_results.json +8 -0
- trainer_state.json +255 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,65 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: PlanTL-GOB-ES/RoBERTalex
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
model-index:
|
13 |
+
- name: RoBertaLex_v11
|
14 |
+
results: []
|
15 |
---
|
16 |
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
|
20 |
+
# RoBertaLex_v11
|
21 |
|
22 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/RoBERTalex](https://huggingface.co/PlanTL-GOB-ES/RoBERTalex) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Accuracy: 0.9082
|
25 |
+
- F1: 0.9079
|
26 |
+
- Precision: 0.9100
|
27 |
+
- Recall: 0.9088
|
28 |
+
- Loss: 0.4927
|
29 |
|
30 |
+
## Model description
|
31 |
|
32 |
+
More information needed
|
33 |
|
34 |
+
## Intended uses & limitations
|
35 |
|
36 |
+
More information needed
|
37 |
|
38 |
+
## Training and evaluation data
|
39 |
|
40 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
## Training procedure
|
43 |
|
44 |
+
### Training hyperparameters
|
45 |
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 200
|
54 |
+
- num_epochs: 15
|
55 |
|
56 |
+
### Training results
|
57 |
|
|
|
58 |
|
|
|
59 |
|
60 |
+
### Framework versions
|
61 |
|
62 |
+
- Transformers 4.44.2
|
63 |
+
- Pytorch 2.5.0+cu121
|
64 |
+
- Datasets 3.1.0
|
65 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_results.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.0,
|
3 |
+
"eval_accuracy": 0.9082010582010582,
|
4 |
+
"eval_f1": 0.9079087150920282,
|
5 |
+
"eval_loss": 0.4926854968070984,
|
6 |
+
"eval_precision": 0.9100340807600719,
|
7 |
+
"eval_recall": 0.9087758232905191,
|
8 |
+
"eval_runtime": 127.4857,
|
9 |
+
"eval_samples_per_second": 29.65,
|
10 |
+
"eval_steps_per_second": 3.71,
|
11 |
+
"total_flos": 1.62503106619392e+16,
|
12 |
+
"train_eval_accuracy": 0.9763038548752835,
|
13 |
+
"train_eval_f1": 0.9762453458735343,
|
14 |
+
"train_eval_loss": 0.09657437354326248,
|
15 |
+
"train_eval_precision": 0.9765774895508033,
|
16 |
+
"train_eval_recall": 0.9763401145817671,
|
17 |
+
"train_loss": 0.5412681450144088,
|
18 |
+
"train_runtime": 9360.1511,
|
19 |
+
"train_samples_per_second": 14.134,
|
20 |
+
"train_steps_per_second": 1.768
|
21 |
+
}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RobertaForSequenceClassification"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "PlanTL-GOB-ES/RoBERTalex",
|
3 |
"architectures": [
|
4 |
"RobertaForSequenceClassification"
|
5 |
],
|
eval_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.0,
|
3 |
+
"eval_accuracy": 0.9082010582010582,
|
4 |
+
"eval_f1": 0.9079087150920282,
|
5 |
+
"eval_loss": 0.4926854968070984,
|
6 |
+
"eval_precision": 0.9100340807600719,
|
7 |
+
"eval_recall": 0.9087758232905191,
|
8 |
+
"eval_runtime": 127.4857,
|
9 |
+
"eval_samples_per_second": 29.65,
|
10 |
+
"eval_steps_per_second": 3.71
|
11 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.0,
|
3 |
+
"total_flos": 1.62503106619392e+16,
|
4 |
+
"train_loss": 0.5412681450144088,
|
5 |
+
"train_runtime": 9360.1511,
|
6 |
+
"train_samples_per_second": 14.134,
|
7 |
+
"train_steps_per_second": 1.768
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 7.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 7721,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"step": 1103,
|
14 |
+
"train_eval_accuracy": 0.7887755102040817,
|
15 |
+
"train_eval_f1": 0.7499765233661925,
|
16 |
+
"train_eval_loss": 0.6592453122138977,
|
17 |
+
"train_eval_precision": 0.7927385476759929,
|
18 |
+
"train_eval_recall": 0.7853664471213178,
|
19 |
+
"train_loss": 0.6592453718185425,
|
20 |
+
"train_runtime": 296.3413,
|
21 |
+
"train_samples_per_second": 29.763,
|
22 |
+
"train_steps_per_second": 3.722
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"epoch": 1.0,
|
26 |
+
"eval_accuracy": 0.7685185185185185,
|
27 |
+
"eval_f1": 0.7339765316819828,
|
28 |
+
"eval_loss": 0.7040889859199524,
|
29 |
+
"eval_precision": 0.7863260957104617,
|
30 |
+
"eval_recall": 0.7767501150267258,
|
31 |
+
"eval_runtime": 126.8841,
|
32 |
+
"eval_samples_per_second": 29.791,
|
33 |
+
"eval_steps_per_second": 3.728,
|
34 |
+
"step": 1103
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 2.0,
|
38 |
+
"step": 2206,
|
39 |
+
"train_eval_accuracy": 0.8997732426303855,
|
40 |
+
"train_eval_f1": 0.8934703863536795,
|
41 |
+
"train_eval_loss": 0.3266890048980713,
|
42 |
+
"train_eval_precision": 0.9101662801242012,
|
43 |
+
"train_eval_recall": 0.8995948840878806,
|
44 |
+
"train_loss": 0.3266890048980713,
|
45 |
+
"train_runtime": 296.0976,
|
46 |
+
"train_samples_per_second": 29.787,
|
47 |
+
"train_steps_per_second": 3.725
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 2.0,
|
51 |
+
"eval_accuracy": 0.8748677248677249,
|
52 |
+
"eval_f1": 0.8663052621269062,
|
53 |
+
"eval_loss": 0.41356033086776733,
|
54 |
+
"eval_precision": 0.8855161789508988,
|
55 |
+
"eval_recall": 0.8760987779104309,
|
56 |
+
"eval_runtime": 127.0363,
|
57 |
+
"eval_samples_per_second": 29.755,
|
58 |
+
"eval_steps_per_second": 3.723,
|
59 |
+
"step": 2206
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 3.0,
|
63 |
+
"step": 3309,
|
64 |
+
"train_eval_accuracy": 0.9326530612244898,
|
65 |
+
"train_eval_f1": 0.9319607388705672,
|
66 |
+
"train_eval_loss": 0.25093671679496765,
|
67 |
+
"train_eval_precision": 0.934719996865382,
|
68 |
+
"train_eval_recall": 0.9321842163347528,
|
69 |
+
"train_loss": 0.25093671679496765,
|
70 |
+
"train_runtime": 296.2824,
|
71 |
+
"train_samples_per_second": 29.769,
|
72 |
+
"train_steps_per_second": 3.723
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 3.0,
|
76 |
+
"eval_accuracy": 0.9042328042328043,
|
77 |
+
"eval_f1": 0.9039529271468891,
|
78 |
+
"eval_loss": 0.39229774475097656,
|
79 |
+
"eval_precision": 0.9080753320256745,
|
80 |
+
"eval_recall": 0.9062393448267169,
|
81 |
+
"eval_runtime": 126.7759,
|
82 |
+
"eval_samples_per_second": 29.816,
|
83 |
+
"eval_steps_per_second": 3.731,
|
84 |
+
"step": 3309
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 4.0,
|
88 |
+
"step": 4412,
|
89 |
+
"train_eval_accuracy": 0.9439909297052154,
|
90 |
+
"train_eval_f1": 0.9436709080792405,
|
91 |
+
"train_eval_loss": 0.2164522260427475,
|
92 |
+
"train_eval_precision": 0.9456422075056565,
|
93 |
+
"train_eval_recall": 0.9435377727151975,
|
94 |
+
"train_loss": 0.2164521962404251,
|
95 |
+
"train_runtime": 296.0068,
|
96 |
+
"train_samples_per_second": 29.797,
|
97 |
+
"train_steps_per_second": 3.726
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 4.0,
|
101 |
+
"eval_accuracy": 0.9050264550264551,
|
102 |
+
"eval_f1": 0.9051255458970469,
|
103 |
+
"eval_loss": 0.42613422870635986,
|
104 |
+
"eval_precision": 0.9081998981335793,
|
105 |
+
"eval_recall": 0.9074460110563182,
|
106 |
+
"eval_runtime": 126.5384,
|
107 |
+
"eval_samples_per_second": 29.872,
|
108 |
+
"eval_steps_per_second": 3.738,
|
109 |
+
"step": 4412
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 5.0,
|
113 |
+
"step": 5515,
|
114 |
+
"train_eval_accuracy": 0.9621315192743765,
|
115 |
+
"train_eval_f1": 0.9621058175036092,
|
116 |
+
"train_eval_loss": 0.1465868204832077,
|
117 |
+
"train_eval_precision": 0.963177617453184,
|
118 |
+
"train_eval_recall": 0.9619998226212546,
|
119 |
+
"train_loss": 0.1465868204832077,
|
120 |
+
"train_runtime": 295.9817,
|
121 |
+
"train_samples_per_second": 29.799,
|
122 |
+
"train_steps_per_second": 3.727
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 5.0,
|
126 |
+
"eval_accuracy": 0.903968253968254,
|
127 |
+
"eval_f1": 0.9038650845517326,
|
128 |
+
"eval_loss": 0.4323442280292511,
|
129 |
+
"eval_precision": 0.9057544963051973,
|
130 |
+
"eval_recall": 0.9056543685348158,
|
131 |
+
"eval_runtime": 126.9132,
|
132 |
+
"eval_samples_per_second": 29.784,
|
133 |
+
"eval_steps_per_second": 3.727,
|
134 |
+
"step": 5515
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 6.0,
|
138 |
+
"step": 6618,
|
139 |
+
"train_eval_accuracy": 0.9688208616780045,
|
140 |
+
"train_eval_f1": 0.9686094121707401,
|
141 |
+
"train_eval_loss": 0.12130556255578995,
|
142 |
+
"train_eval_precision": 0.9692092193201128,
|
143 |
+
"train_eval_recall": 0.968624092631756,
|
144 |
+
"train_loss": 0.12130556255578995,
|
145 |
+
"train_runtime": 295.4832,
|
146 |
+
"train_samples_per_second": 29.849,
|
147 |
+
"train_steps_per_second": 3.733
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 6.0,
|
151 |
+
"eval_accuracy": 0.9074074074074074,
|
152 |
+
"eval_f1": 0.9074718452978288,
|
153 |
+
"eval_loss": 0.4809330999851227,
|
154 |
+
"eval_precision": 0.9099023812111475,
|
155 |
+
"eval_recall": 0.9094968555241478,
|
156 |
+
"eval_runtime": 126.5478,
|
157 |
+
"eval_samples_per_second": 29.87,
|
158 |
+
"eval_steps_per_second": 3.738,
|
159 |
+
"step": 6618
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 7.0,
|
163 |
+
"step": 7721,
|
164 |
+
"train_eval_accuracy": 0.9763038548752835,
|
165 |
+
"train_eval_f1": 0.9762453458735343,
|
166 |
+
"train_eval_loss": 0.09657437354326248,
|
167 |
+
"train_eval_precision": 0.9765774895508033,
|
168 |
+
"train_eval_recall": 0.9763401145817671,
|
169 |
+
"train_loss": 0.09657437354326248,
|
170 |
+
"train_runtime": 296.9603,
|
171 |
+
"train_samples_per_second": 29.701,
|
172 |
+
"train_steps_per_second": 3.714
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 7.0,
|
176 |
+
"eval_accuracy": 0.9082010582010582,
|
177 |
+
"eval_f1": 0.9079087150920282,
|
178 |
+
"eval_loss": 0.4926854968070984,
|
179 |
+
"eval_precision": 0.9100340807600719,
|
180 |
+
"eval_recall": 0.9087758232905191,
|
181 |
+
"eval_runtime": 127.7522,
|
182 |
+
"eval_samples_per_second": 29.589,
|
183 |
+
"eval_steps_per_second": 3.702,
|
184 |
+
"step": 7721
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 7.0,
|
188 |
+
"step": 7721,
|
189 |
+
"total_flos": 1.62503106619392e+16,
|
190 |
+
"train_loss": 0.5412681450144088,
|
191 |
+
"train_runtime": 9360.1511,
|
192 |
+
"train_samples_per_second": 14.134,
|
193 |
+
"train_steps_per_second": 1.768
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 7.0,
|
197 |
+
"eval_accuracy": 0.9082010582010582,
|
198 |
+
"eval_f1": 0.9079087150920282,
|
199 |
+
"eval_loss": 0.4926854968070984,
|
200 |
+
"eval_precision": 0.9100340807600719,
|
201 |
+
"eval_recall": 0.9087758232905191,
|
202 |
+
"eval_runtime": 127.3673,
|
203 |
+
"eval_samples_per_second": 29.678,
|
204 |
+
"eval_steps_per_second": 3.714,
|
205 |
+
"step": 7721
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 7.0,
|
209 |
+
"step": 7721,
|
210 |
+
"train_en_eval_accuracy": 0.9763038548752835,
|
211 |
+
"train_en_eval_f1": 0.9762453458735343,
|
212 |
+
"train_en_eval_loss": 0.09657437354326248,
|
213 |
+
"train_en_eval_precision": 0.9765774895508033,
|
214 |
+
"train_en_eval_recall": 0.9763401145817671,
|
215 |
+
"train_en_loss": 0.09657437354326248,
|
216 |
+
"train_en_runtime": 296.2956,
|
217 |
+
"train_en_samples_per_second": 29.768,
|
218 |
+
"train_en_steps_per_second": 3.723
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 7.0,
|
222 |
+
"step": 7721,
|
223 |
+
"test_en_eval_accuracy": 0.9082010582010582,
|
224 |
+
"test_en_eval_f1": 0.9079087150920282,
|
225 |
+
"test_en_eval_loss": 0.4926854372024536,
|
226 |
+
"test_en_eval_precision": 0.9100340807600719,
|
227 |
+
"test_en_eval_recall": 0.9087758232905191,
|
228 |
+
"test_en_loss": 0.4926854968070984,
|
229 |
+
"test_en_runtime": 126.7992,
|
230 |
+
"test_en_samples_per_second": 29.811,
|
231 |
+
"test_en_steps_per_second": 3.73
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"logging_steps": 500,
|
235 |
+
"max_steps": 16545,
|
236 |
+
"num_input_tokens_seen": 0,
|
237 |
+
"num_train_epochs": 15,
|
238 |
+
"save_steps": 500,
|
239 |
+
"stateful_callbacks": {
|
240 |
+
"TrainerControl": {
|
241 |
+
"args": {
|
242 |
+
"should_epoch_stop": false,
|
243 |
+
"should_evaluate": false,
|
244 |
+
"should_log": false,
|
245 |
+
"should_save": true,
|
246 |
+
"should_training_stop": true
|
247 |
+
},
|
248 |
+
"attributes": {}
|
249 |
+
}
|
250 |
+
},
|
251 |
+
"total_flos": 1.62503106619392e+16,
|
252 |
+
"train_batch_size": 8,
|
253 |
+
"trial_name": null,
|
254 |
+
"trial_params": null
|
255 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7f52fb2059e3039b95b93cb69870281e404abdff9751b8ee472ac1d35cb4c63
|
3 |
+
size 5176
|