JhonMR commited on
Commit
638803e
·
verified ·
1 Parent(s): 4402955

End of training

Browse files
Files changed (7) hide show
  1. README.md +45 -179
  2. all_results.json +21 -0
  3. config.json +1 -1
  4. eval_results.json +11 -0
  5. train_results.json +8 -0
  6. trainer_state.json +255 -0
  7. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,65 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/RoBERTalex
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: RoBertaLex_v11
14
+ results: []
15
  ---
16
 
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
 
20
+ # RoBertaLex_v11
21
 
22
+ This model is a fine-tuned version of [PlanTL-GOB-ES/RoBERTalex](https://huggingface.co/PlanTL-GOB-ES/RoBERTalex) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Accuracy: 0.9082
25
+ - F1: 0.9079
26
+ - Precision: 0.9100
27
+ - Recall: 0.9088
28
+ - Loss: 0.4927
29
 
30
+ ## Model description
31
 
32
+ More information needed
33
 
34
+ ## Intended uses & limitations
35
 
36
+ More information needed
37
 
38
+ ## Training and evaluation data
39
 
40
+ More information needed
 
 
 
 
 
 
41
 
42
+ ## Training procedure
43
 
44
+ ### Training hyperparameters
45
 
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 200
54
+ - num_epochs: 15
55
 
56
+ ### Training results
57
 
 
58
 
 
59
 
60
+ ### Framework versions
61
 
62
+ - Transformers 4.44.2
63
+ - Pytorch 2.5.0+cu121
64
+ - Datasets 3.1.0
65
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.0,
3
+ "eval_accuracy": 0.9082010582010582,
4
+ "eval_f1": 0.9079087150920282,
5
+ "eval_loss": 0.4926854968070984,
6
+ "eval_precision": 0.9100340807600719,
7
+ "eval_recall": 0.9087758232905191,
8
+ "eval_runtime": 127.4857,
9
+ "eval_samples_per_second": 29.65,
10
+ "eval_steps_per_second": 3.71,
11
+ "total_flos": 1.62503106619392e+16,
12
+ "train_eval_accuracy": 0.9763038548752835,
13
+ "train_eval_f1": 0.9762453458735343,
14
+ "train_eval_loss": 0.09657437354326248,
15
+ "train_eval_precision": 0.9765774895508033,
16
+ "train_eval_recall": 0.9763401145817671,
17
+ "train_loss": 0.5412681450144088,
18
+ "train_runtime": 9360.1511,
19
+ "train_samples_per_second": 14.134,
20
+ "train_steps_per_second": 1.768
21
+ }
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "RoBertaLex_v11",
3
  "architectures": [
4
  "RobertaForSequenceClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "PlanTL-GOB-ES/RoBERTalex",
3
  "architectures": [
4
  "RobertaForSequenceClassification"
5
  ],
eval_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.0,
3
+ "eval_accuracy": 0.9082010582010582,
4
+ "eval_f1": 0.9079087150920282,
5
+ "eval_loss": 0.4926854968070984,
6
+ "eval_precision": 0.9100340807600719,
7
+ "eval_recall": 0.9087758232905191,
8
+ "eval_runtime": 127.4857,
9
+ "eval_samples_per_second": 29.65,
10
+ "eval_steps_per_second": 3.71
11
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.0,
3
+ "total_flos": 1.62503106619392e+16,
4
+ "train_loss": 0.5412681450144088,
5
+ "train_runtime": 9360.1511,
6
+ "train_samples_per_second": 14.134,
7
+ "train_steps_per_second": 1.768
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 7.0,
5
+ "eval_steps": 500,
6
+ "global_step": 7721,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "step": 1103,
14
+ "train_eval_accuracy": 0.7887755102040817,
15
+ "train_eval_f1": 0.7499765233661925,
16
+ "train_eval_loss": 0.6592453122138977,
17
+ "train_eval_precision": 0.7927385476759929,
18
+ "train_eval_recall": 0.7853664471213178,
19
+ "train_loss": 0.6592453718185425,
20
+ "train_runtime": 296.3413,
21
+ "train_samples_per_second": 29.763,
22
+ "train_steps_per_second": 3.722
23
+ },
24
+ {
25
+ "epoch": 1.0,
26
+ "eval_accuracy": 0.7685185185185185,
27
+ "eval_f1": 0.7339765316819828,
28
+ "eval_loss": 0.7040889859199524,
29
+ "eval_precision": 0.7863260957104617,
30
+ "eval_recall": 0.7767501150267258,
31
+ "eval_runtime": 126.8841,
32
+ "eval_samples_per_second": 29.791,
33
+ "eval_steps_per_second": 3.728,
34
+ "step": 1103
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "step": 2206,
39
+ "train_eval_accuracy": 0.8997732426303855,
40
+ "train_eval_f1": 0.8934703863536795,
41
+ "train_eval_loss": 0.3266890048980713,
42
+ "train_eval_precision": 0.9101662801242012,
43
+ "train_eval_recall": 0.8995948840878806,
44
+ "train_loss": 0.3266890048980713,
45
+ "train_runtime": 296.0976,
46
+ "train_samples_per_second": 29.787,
47
+ "train_steps_per_second": 3.725
48
+ },
49
+ {
50
+ "epoch": 2.0,
51
+ "eval_accuracy": 0.8748677248677249,
52
+ "eval_f1": 0.8663052621269062,
53
+ "eval_loss": 0.41356033086776733,
54
+ "eval_precision": 0.8855161789508988,
55
+ "eval_recall": 0.8760987779104309,
56
+ "eval_runtime": 127.0363,
57
+ "eval_samples_per_second": 29.755,
58
+ "eval_steps_per_second": 3.723,
59
+ "step": 2206
60
+ },
61
+ {
62
+ "epoch": 3.0,
63
+ "step": 3309,
64
+ "train_eval_accuracy": 0.9326530612244898,
65
+ "train_eval_f1": 0.9319607388705672,
66
+ "train_eval_loss": 0.25093671679496765,
67
+ "train_eval_precision": 0.934719996865382,
68
+ "train_eval_recall": 0.9321842163347528,
69
+ "train_loss": 0.25093671679496765,
70
+ "train_runtime": 296.2824,
71
+ "train_samples_per_second": 29.769,
72
+ "train_steps_per_second": 3.723
73
+ },
74
+ {
75
+ "epoch": 3.0,
76
+ "eval_accuracy": 0.9042328042328043,
77
+ "eval_f1": 0.9039529271468891,
78
+ "eval_loss": 0.39229774475097656,
79
+ "eval_precision": 0.9080753320256745,
80
+ "eval_recall": 0.9062393448267169,
81
+ "eval_runtime": 126.7759,
82
+ "eval_samples_per_second": 29.816,
83
+ "eval_steps_per_second": 3.731,
84
+ "step": 3309
85
+ },
86
+ {
87
+ "epoch": 4.0,
88
+ "step": 4412,
89
+ "train_eval_accuracy": 0.9439909297052154,
90
+ "train_eval_f1": 0.9436709080792405,
91
+ "train_eval_loss": 0.2164522260427475,
92
+ "train_eval_precision": 0.9456422075056565,
93
+ "train_eval_recall": 0.9435377727151975,
94
+ "train_loss": 0.2164521962404251,
95
+ "train_runtime": 296.0068,
96
+ "train_samples_per_second": 29.797,
97
+ "train_steps_per_second": 3.726
98
+ },
99
+ {
100
+ "epoch": 4.0,
101
+ "eval_accuracy": 0.9050264550264551,
102
+ "eval_f1": 0.9051255458970469,
103
+ "eval_loss": 0.42613422870635986,
104
+ "eval_precision": 0.9081998981335793,
105
+ "eval_recall": 0.9074460110563182,
106
+ "eval_runtime": 126.5384,
107
+ "eval_samples_per_second": 29.872,
108
+ "eval_steps_per_second": 3.738,
109
+ "step": 4412
110
+ },
111
+ {
112
+ "epoch": 5.0,
113
+ "step": 5515,
114
+ "train_eval_accuracy": 0.9621315192743765,
115
+ "train_eval_f1": 0.9621058175036092,
116
+ "train_eval_loss": 0.1465868204832077,
117
+ "train_eval_precision": 0.963177617453184,
118
+ "train_eval_recall": 0.9619998226212546,
119
+ "train_loss": 0.1465868204832077,
120
+ "train_runtime": 295.9817,
121
+ "train_samples_per_second": 29.799,
122
+ "train_steps_per_second": 3.727
123
+ },
124
+ {
125
+ "epoch": 5.0,
126
+ "eval_accuracy": 0.903968253968254,
127
+ "eval_f1": 0.9038650845517326,
128
+ "eval_loss": 0.4323442280292511,
129
+ "eval_precision": 0.9057544963051973,
130
+ "eval_recall": 0.9056543685348158,
131
+ "eval_runtime": 126.9132,
132
+ "eval_samples_per_second": 29.784,
133
+ "eval_steps_per_second": 3.727,
134
+ "step": 5515
135
+ },
136
+ {
137
+ "epoch": 6.0,
138
+ "step": 6618,
139
+ "train_eval_accuracy": 0.9688208616780045,
140
+ "train_eval_f1": 0.9686094121707401,
141
+ "train_eval_loss": 0.12130556255578995,
142
+ "train_eval_precision": 0.9692092193201128,
143
+ "train_eval_recall": 0.968624092631756,
144
+ "train_loss": 0.12130556255578995,
145
+ "train_runtime": 295.4832,
146
+ "train_samples_per_second": 29.849,
147
+ "train_steps_per_second": 3.733
148
+ },
149
+ {
150
+ "epoch": 6.0,
151
+ "eval_accuracy": 0.9074074074074074,
152
+ "eval_f1": 0.9074718452978288,
153
+ "eval_loss": 0.4809330999851227,
154
+ "eval_precision": 0.9099023812111475,
155
+ "eval_recall": 0.9094968555241478,
156
+ "eval_runtime": 126.5478,
157
+ "eval_samples_per_second": 29.87,
158
+ "eval_steps_per_second": 3.738,
159
+ "step": 6618
160
+ },
161
+ {
162
+ "epoch": 7.0,
163
+ "step": 7721,
164
+ "train_eval_accuracy": 0.9763038548752835,
165
+ "train_eval_f1": 0.9762453458735343,
166
+ "train_eval_loss": 0.09657437354326248,
167
+ "train_eval_precision": 0.9765774895508033,
168
+ "train_eval_recall": 0.9763401145817671,
169
+ "train_loss": 0.09657437354326248,
170
+ "train_runtime": 296.9603,
171
+ "train_samples_per_second": 29.701,
172
+ "train_steps_per_second": 3.714
173
+ },
174
+ {
175
+ "epoch": 7.0,
176
+ "eval_accuracy": 0.9082010582010582,
177
+ "eval_f1": 0.9079087150920282,
178
+ "eval_loss": 0.4926854968070984,
179
+ "eval_precision": 0.9100340807600719,
180
+ "eval_recall": 0.9087758232905191,
181
+ "eval_runtime": 127.7522,
182
+ "eval_samples_per_second": 29.589,
183
+ "eval_steps_per_second": 3.702,
184
+ "step": 7721
185
+ },
186
+ {
187
+ "epoch": 7.0,
188
+ "step": 7721,
189
+ "total_flos": 1.62503106619392e+16,
190
+ "train_loss": 0.5412681450144088,
191
+ "train_runtime": 9360.1511,
192
+ "train_samples_per_second": 14.134,
193
+ "train_steps_per_second": 1.768
194
+ },
195
+ {
196
+ "epoch": 7.0,
197
+ "eval_accuracy": 0.9082010582010582,
198
+ "eval_f1": 0.9079087150920282,
199
+ "eval_loss": 0.4926854968070984,
200
+ "eval_precision": 0.9100340807600719,
201
+ "eval_recall": 0.9087758232905191,
202
+ "eval_runtime": 127.3673,
203
+ "eval_samples_per_second": 29.678,
204
+ "eval_steps_per_second": 3.714,
205
+ "step": 7721
206
+ },
207
+ {
208
+ "epoch": 7.0,
209
+ "step": 7721,
210
+ "train_en_eval_accuracy": 0.9763038548752835,
211
+ "train_en_eval_f1": 0.9762453458735343,
212
+ "train_en_eval_loss": 0.09657437354326248,
213
+ "train_en_eval_precision": 0.9765774895508033,
214
+ "train_en_eval_recall": 0.9763401145817671,
215
+ "train_en_loss": 0.09657437354326248,
216
+ "train_en_runtime": 296.2956,
217
+ "train_en_samples_per_second": 29.768,
218
+ "train_en_steps_per_second": 3.723
219
+ },
220
+ {
221
+ "epoch": 7.0,
222
+ "step": 7721,
223
+ "test_en_eval_accuracy": 0.9082010582010582,
224
+ "test_en_eval_f1": 0.9079087150920282,
225
+ "test_en_eval_loss": 0.4926854372024536,
226
+ "test_en_eval_precision": 0.9100340807600719,
227
+ "test_en_eval_recall": 0.9087758232905191,
228
+ "test_en_loss": 0.4926854968070984,
229
+ "test_en_runtime": 126.7992,
230
+ "test_en_samples_per_second": 29.811,
231
+ "test_en_steps_per_second": 3.73
232
+ }
233
+ ],
234
+ "logging_steps": 500,
235
+ "max_steps": 16545,
236
+ "num_input_tokens_seen": 0,
237
+ "num_train_epochs": 15,
238
+ "save_steps": 500,
239
+ "stateful_callbacks": {
240
+ "TrainerControl": {
241
+ "args": {
242
+ "should_epoch_stop": false,
243
+ "should_evaluate": false,
244
+ "should_log": false,
245
+ "should_save": true,
246
+ "should_training_stop": true
247
+ },
248
+ "attributes": {}
249
+ }
250
+ },
251
+ "total_flos": 1.62503106619392e+16,
252
+ "train_batch_size": 8,
253
+ "trial_name": null,
254
+ "trial_params": null
255
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7f52fb2059e3039b95b93cb69870281e404abdff9751b8ee472ac1d35cb4c63
3
+ size 5176