|
"""Image processor class for Molmo2""" |
|
from typing import TYPE_CHECKING, Tuple, List, Optional, Union, Dict, Any |
|
import numpy as np |
|
import einops |
|
import torch |
|
import torchvision.transforms |
|
from torchvision.transforms import InterpolationMode |
|
from torchvision.transforms.functional import convert_image_dtype |
|
|
|
from transformers.image_utils import ( |
|
OPENAI_CLIP_MEAN, |
|
OPENAI_CLIP_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
is_valid_image, |
|
valid_images, |
|
to_numpy_array, |
|
) |
|
from transformers.image_transforms import convert_to_rgb, to_channel_dimension_format |
|
from transformers.processing_utils import ImagesKwargs |
|
from transformers.image_processing_utils import BaseImageProcessor |
|
from transformers.utils import logging |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.utils import TensorType, logging |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.utils import TensorType, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def is_multi_image(image: Union[ImageInput, List[ImageInput]]) -> bool: |
|
return isinstance(image, (list, tuple)) |
|
|
|
|
|
def make_batched_images(images) -> List[ImageInput]: |
|
""" |
|
Accepts images in list or nested list format. |
|
|
|
Args: |
|
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): |
|
The input image. |
|
|
|
Returns: |
|
list: A list of images or a list of lists of images. |
|
""" |
|
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]): |
|
return images |
|
|
|
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): |
|
return images |
|
|
|
elif is_valid_image(images): |
|
return [images] |
|
|
|
raise ValueError(f"Could not make batched images from {images}") |
|
|
|
|
|
def normalize_image(image: np.ndarray, normalize_mode: str) -> np.ndarray: |
|
if normalize_mode == "openai": |
|
image -= np.array(OPENAI_CLIP_MEAN, dtype=np.float32)[None, None, :] |
|
image /= np.array(OPENAI_CLIP_STD, dtype=np.float32)[None, None, :] |
|
elif normalize_mode == "siglip": |
|
image = np.asarray(-1.0, dtype=np.float32) + image * np.asarray(2.0, dtype=np.float32) |
|
elif normalize_mode == "dino": |
|
image -= np.array([0.485, 0.456, 0.406], dtype=np.float32)[None, None, :] |
|
image /= np.array([0.229, 0.224, 0.225], dtype=np.float32)[None, None, :] |
|
else: |
|
raise NotImplementedError(normalize_mode) |
|
return image |
|
|
|
|
|
def resize_and_pad( |
|
image, |
|
desired_output_size, |
|
resize_method="torch-bilinear", |
|
pad_value=0, |
|
): |
|
"""Resize an image while padding to preserve uts aspect ratio.""" |
|
desired_height, desired_width = desired_output_size |
|
height, width = image.shape[:2] |
|
|
|
|
|
|
|
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32) |
|
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32) |
|
image_scale = min(image_scale_x, image_scale_y) |
|
scaled_height = int(np.array(height, np.float32) * image_scale) |
|
scaled_width = int(np.array(width, np.float32) * image_scale) |
|
|
|
if resize_method in ["torch-bilinear"]: |
|
image = torch.permute(torch.from_numpy(image), [2, 0, 1]) |
|
image = convert_image_dtype(image) |
|
mode = InterpolationMode.BILINEAR |
|
image = torchvision.transforms.Resize([scaled_height, scaled_width], mode, antialias=True)(image) |
|
image = torch.clip(image, 0.0, 1.0) |
|
image = torch.permute(image, [1, 2, 0]).numpy() |
|
else: |
|
raise NotImplementedError(resize_method) |
|
|
|
top_pad = (desired_height - scaled_height) // 2 |
|
left_pad = (desired_width - scaled_width) // 2 |
|
padding = [ |
|
[top_pad, desired_height - scaled_height - top_pad], |
|
[left_pad, desired_width - scaled_width - left_pad], |
|
[0, 0] |
|
] |
|
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2]) |
|
image = np.pad(image, padding, constant_values=pad_value) |
|
return image, image_mask |
|
|
|
|
|
def metaclip_resize(image, desired_output_size): |
|
image = torch.permute(torch.from_numpy(image), [2, 0, 1]) |
|
if torch.is_floating_point(image): |
|
image = torchvision.transforms.Resize( |
|
desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image) |
|
image = torch.clip(image, 0.0, 1.0) |
|
else: |
|
assert image.dtype == torch.uint8, "Expected float images or uint8 images, but got {}".format(image.dtype) |
|
image = torchvision.transforms.Resize( |
|
desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image) |
|
image = image.to(torch.float32) |
|
image = torch.clip(image, 0, 255) |
|
image = image / 255.0 |
|
resized = torch.permute(image, [1, 2, 0]).numpy() |
|
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_) |
|
return resized, image_mask |
|
|
|
|
|
def siglip_resize_and_pad( |
|
image: np.ndarray, |
|
desired_output_size: Tuple[int, int], |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
if len(image.shape) == 3: |
|
is_video = False |
|
image = torch.permute(torch.from_numpy(image), [2, 0, 1]) |
|
else: |
|
is_video = True |
|
image = torch.permute(torch.from_numpy(image), [0, 3, 1, 2]) |
|
dtype = image.dtype |
|
if torch.is_floating_point(image): |
|
in_min = 0.0 |
|
in_max = 1.0 |
|
resized = torchvision.transforms.Resize( |
|
desired_output_size, |
|
InterpolationMode.BILINEAR, |
|
antialias=False, |
|
)(image) |
|
resized = torch.clip(resized, 0.0, 1.0).to(dtype) |
|
else: |
|
assert image.dtype == torch.uint8, "SigLIP expects float images or uint8 images, but got {}".format(image.dtype) |
|
in_min = 0.0 |
|
in_max = 255.0 |
|
resized = torchvision.transforms.Resize( |
|
desired_output_size, |
|
InterpolationMode.BILINEAR, |
|
antialias=False, |
|
)(image) |
|
resized = torch.clip(resized, 0, 255).to(dtype) |
|
|
|
resized = resized.to(torch.float32) |
|
resized = (resized - in_min) / (in_max - in_min) |
|
|
|
if is_video: |
|
resized = torch.permute(resized, [0, 2, 3, 1]).numpy() |
|
image_mask = None |
|
else: |
|
resized = torch.permute(resized, [1, 2, 0]).numpy() |
|
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_) |
|
|
|
return resized, image_mask |
|
|
|
|
|
def dino_resize_and_pad( |
|
image: np.ndarray, |
|
desired_output_size: Tuple[int, int], |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
image = torch.permute(torch.from_numpy(image), [2, 0, 1]) |
|
dtype = image.dtype |
|
if torch.is_floating_point(image): |
|
resized = torchvision.transforms.Resize( |
|
desired_output_size, |
|
InterpolationMode.BICUBIC, |
|
antialias=True, |
|
)(image) |
|
resized = torch.clip(resized, 0.0, 1.0).to(torch.float32) |
|
else: |
|
assert image.dtype == torch.uint8, "DINOv2 expects float images or uint8 images, but got {}".format(image.dtype) |
|
resized = torchvision.transforms.Resize( |
|
desired_output_size, |
|
InterpolationMode.BICUBIC, |
|
antialias=True, |
|
)(image) |
|
resized = torch.clip(resized, 0, 255).to(torch.float32) |
|
resized = resized / 255.0 |
|
|
|
resized = torch.permute(resized, [1, 2, 0]).numpy() |
|
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_) |
|
|
|
return resized, image_mask |
|
|
|
|
|
def resize_image( |
|
image: np.ndarray, |
|
resize_mode: str, |
|
output_size: Tuple[int, int], |
|
pad_value: float, |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
if resize_mode == "siglip": |
|
return siglip_resize_and_pad(image, output_size) |
|
elif resize_mode == "dino": |
|
return dino_resize_and_pad(image, output_size) |
|
elif resize_mode == "metaclip": |
|
return metaclip_resize(image, output_size) |
|
else: |
|
resize = "torch-bilinear" if resize_mode == "default" else resize_mode |
|
return resize_and_pad( |
|
image, output_size, resize_method=resize, pad_value=pad_value, |
|
) |
|
|
|
|
|
def select_tiling(h, w, patch_size, max_num_crops): |
|
"""Divide in image of size [w, h] in up to max_num_patches of size patch_size""" |
|
original_size = np.stack([h, w]) |
|
original_res = h * w |
|
tilings = [] |
|
for i in range(1, max_num_crops + 1): |
|
for j in range(1, max_num_crops + 1): |
|
if i*j <= max_num_crops: |
|
tilings.append((i, j)) |
|
|
|
tilings.sort(key=lambda x: (x[0]*x[1], x[0])) |
|
candidate_tilings = np.array(tilings, dtype=np.int32) |
|
candidate_resolutions = candidate_tilings * patch_size |
|
|
|
|
|
original_size = np.stack([h, w], dtype=np.float32) |
|
|
|
|
|
|
|
|
|
with np.errstate(divide='ignore'): |
|
required_scale_d = candidate_resolutions.astype(np.float32) / original_size, |
|
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) |
|
if np.all(required_scale < 1): |
|
|
|
ix = np.argmax(required_scale) |
|
else: |
|
|
|
required_scale = np.where(required_scale < 1.0, 10e9, required_scale) |
|
ix = np.argmin(required_scale) |
|
return candidate_tilings[ix] |
|
|
|
|
|
def build_resized_image( |
|
image: np.ndarray, |
|
resize_mode: str, |
|
normalized_mode: str, |
|
base_image_input_size: List[int], |
|
pad_value: float, |
|
image_patch_size: int, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
resized, resized_mask = resize_image( |
|
image, resize_mode, base_image_input_size, pad_value, |
|
) |
|
resized = normalize_image(resized, normalized_mode) |
|
if len(resized.shape) == 3: |
|
resized = np.expand_dims(resized, 0) |
|
resized_mask = np.expand_dims(resized_mask, 0) |
|
crop_patch_w = base_image_input_size[1] // image_patch_size |
|
crop_patch_h = base_image_input_size[0] // image_patch_size |
|
resize_idx = np.arange(crop_patch_w*crop_patch_h).reshape([crop_patch_h, crop_patch_w]) |
|
return resized, resized_mask, resize_idx |
|
|
|
|
|
def build_overlapping_crops( |
|
image: np.ndarray, |
|
resize_mode: str, |
|
normalize_mode: str, |
|
max_crops: int, |
|
overlap_margins: List[int], |
|
base_image_input_size: List[int], |
|
pad_value: float, |
|
image_patch_size: int, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
"""Decompose an image into a set of overlapping crops |
|
|
|
:return crop_arr: [n_crops, h, w, 3] The crops |
|
:return mask_arr: [n_crops, h, w] The padding masks |
|
:return patch_idx: [overlap_patch_h, overlap_patch_w] For each patch in the resized image |
|
the crops were extracted from, what patch in `crop_arr` it corresponds to |
|
""" |
|
original_image_h, original_image_w = image.shape[:2] |
|
crop_size = base_image_input_size[0] |
|
assert base_image_input_size[0] == base_image_input_size[1] |
|
|
|
left_margin, right_margin = overlap_margins |
|
total_margin_pixels = image_patch_size * (right_margin + left_margin) |
|
crop_patches = base_image_input_size[0] // image_patch_size |
|
crop_window_patches = crop_patches - (right_margin + left_margin) |
|
crop_window_size = crop_window_patches * image_patch_size |
|
crop_patch_w = base_image_input_size[1] // image_patch_size |
|
crop_patch_h = base_image_input_size[0] // image_patch_size |
|
original_image_h, original_image_w = image.shape[:2] |
|
crop_size = base_image_input_size[0] |
|
|
|
|
|
|
|
tiling = select_tiling( |
|
original_image_h - total_margin_pixels, |
|
original_image_w - total_margin_pixels, |
|
crop_window_size, |
|
max_crops, |
|
) |
|
|
|
src, img_mask = resize_image( |
|
image, |
|
resize_mode, |
|
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels], |
|
pad_value, |
|
) |
|
src = normalize_image(src, normalize_mode) |
|
|
|
|
|
|
|
n_crops = tiling[0] * tiling[1] |
|
crop_arr = np.zeros([n_crops, crop_size, crop_size, 3], dtype=src.dtype) |
|
mask_arr = np.zeros([n_crops, crop_size, crop_size], dtype=img_mask.dtype) |
|
patch_idx_arr = np.zeros([n_crops, crop_patch_h, crop_patch_w], dtype=np.int32) |
|
on = 0 |
|
on_crop = 0 |
|
for i in range(tiling[0]): |
|
|
|
|
|
y0 = i*crop_window_size |
|
for j in range(tiling[1]): |
|
x0 = j*crop_window_size |
|
crop_arr[on_crop] = src[y0:y0+crop_size, x0:x0+crop_size] |
|
mask_arr[on_crop] = img_mask[y0:y0+crop_size, x0:x0+crop_size] |
|
patch_idx = np.arange(crop_patch_w*crop_patch_h).reshape(crop_patch_h, crop_patch_w) |
|
patch_idx += on_crop * crop_patch_h * crop_patch_w |
|
|
|
|
|
if i != 0: |
|
patch_idx[:left_margin, :] = -1 |
|
if j != 0: |
|
patch_idx[:, :left_margin] = -1 |
|
if i != tiling[0]-1: |
|
patch_idx[-right_margin:, :] = -1 |
|
if j != tiling[1]-1: |
|
patch_idx[:, -right_margin:] = -1 |
|
patch_idx_arr[on_crop] = patch_idx |
|
on_crop += 1 |
|
|
|
|
|
|
|
patch_idx_arr = np.reshape( |
|
patch_idx_arr, |
|
[tiling[0], tiling[1], crop_patch_h, crop_patch_w] |
|
) |
|
patch_idx_arr = np.transpose(patch_idx_arr, [0, 2, 1, 3]) |
|
patch_idx_arr = np.reshape(patch_idx_arr, [-1]) |
|
|
|
|
|
|
|
patch_idx_arr = patch_idx_arr[patch_idx_arr >= 0].reshape( |
|
src.shape[0]//image_patch_size, |
|
src.shape[1]//image_patch_size, |
|
) |
|
return crop_arr, mask_arr, patch_idx_arr |
|
|
|
|
|
def batch_pixels_to_patches(array: np.ndarray, patch_size: int) -> np.ndarray: |
|
"""Reshape images of [n_images, h, w, 3] -> [n_images, n_patches, pixels_per_patch]""" |
|
if len(array.shape) == 3: |
|
n_crops, h, w = array.shape |
|
h_patches = h//patch_size |
|
w_patches = w//patch_size |
|
array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size]) |
|
array = np.transpose(array, [0, 1, 3, 2, 4]) |
|
array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size]) |
|
return array |
|
else: |
|
n_crops, h, w, c = array.shape |
|
h_patches = h//patch_size |
|
w_patches = w//patch_size |
|
array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size, c]) |
|
array = np.transpose(array, [0, 1, 3, 2, 4, 5]) |
|
array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size*c]) |
|
return array |
|
|
|
|
|
def arange_for_pooling( |
|
idx_arr: np.ndarray, |
|
pool_h: int, |
|
pool_w: int, |
|
) -> np.ndarray: |
|
h_pad = pool_h * ((idx_arr.shape[0] + pool_h - 1) // pool_h) - idx_arr.shape[0] |
|
w_pad = pool_w * ((idx_arr.shape[1] + pool_w - 1) // pool_w) - idx_arr.shape[1] |
|
idx_arr = np.pad(idx_arr, [[h_pad//2, (h_pad+1)//2], [w_pad//2, (w_pad+1)//2]], |
|
mode='constant',constant_values=-1) |
|
return einops.rearrange( |
|
idx_arr, "(h dh) (w dw) -> h w (dh dw)", dh=pool_h, dw=pool_w) |
|
|
|
|
|
def image_to_patches_and_grids( |
|
image: ImageInput, |
|
crop_mode: str, |
|
resize_mode: str, |
|
normalize_mode: str, |
|
max_crops: int, |
|
overlap_margins: List[int], |
|
base_image_input_size: List[int], |
|
pad_value: float, |
|
image_patch_size: int, |
|
image_pooling_w: int, |
|
image_pooling_h: int, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
|
""" |
|
:return image_grids, the shape of each (low-res, high-res) image after pooling |
|
:return crops, the image crops to processes with the ViT |
|
:return mask, the padding mask for each crop |
|
:return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the |
|
patches in `crops` to pool for that token, masked with -1 |
|
""" |
|
if isinstance(base_image_input_size, int): |
|
base_image_input_size = (base_image_input_size, base_image_input_size) |
|
|
|
base_image_input_d = image_patch_size |
|
pooling_w = image_pooling_w |
|
pooling_h = image_pooling_h |
|
crop_patch_w = base_image_input_size[1] // base_image_input_d |
|
crop_patch_h = base_image_input_size[0] // base_image_input_d |
|
|
|
if crop_mode == "resize": |
|
resized, resized_mask, resize_idx = build_resized_image( |
|
image, |
|
resize_mode, |
|
normalize_mode, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size |
|
) |
|
pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) |
|
h, w = pooling_idx.shape[:2] |
|
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) |
|
image_grid = [np.array([h, w])] |
|
return ( |
|
np.stack(image_grid, 0), |
|
batch_pixels_to_patches(resized, image_patch_size), |
|
batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1), |
|
pooling_idx, |
|
) |
|
|
|
if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]: |
|
crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops( |
|
image, |
|
resize_mode, |
|
normalize_mode, |
|
max_crops, |
|
overlap_margins, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size, |
|
) |
|
pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w) |
|
h, w = pooling_idx.shape[:2] |
|
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) |
|
image_grid = [np.array([h, w])] |
|
|
|
if crop_mode == "overlap-and-resize": |
|
crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size) |
|
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) |
|
return np.stack(image_grid, 0), crop_arr, mask_arr, pooling_idx |
|
|
|
|
|
resized, resized_mask, resize_idx = build_resized_image( |
|
image, |
|
resize_mode, |
|
normalize_mode, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size |
|
) |
|
crop_arr = np.concatenate([resized, crop_arr], 0) |
|
|
|
mask_arr = np.concatenate([resized_mask, mask_arr], 0) |
|
|
|
resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) |
|
h, w = resize_idx.shape[:2] |
|
resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w]) |
|
|
|
|
|
pooling_idx = np.where( |
|
pooling_idx >= 0, |
|
pooling_idx + crop_patch_h*crop_patch_w, |
|
-1 |
|
) |
|
pooling_idx = np.concatenate([resize_idx, pooling_idx]) |
|
image_grid = [ |
|
np.array([h, w]), |
|
] + image_grid |
|
|
|
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) |
|
return ( |
|
np.stack(image_grid, 0), |
|
batch_pixels_to_patches(crop_arr, image_patch_size), |
|
mask_arr, |
|
pooling_idx |
|
) |
|
else: |
|
raise NotImplementedError(crop_mode) |
|
|
|
|
|
def image_to_patches_and_tokens( |
|
image: ImageInput, |
|
crop_mode: str, |
|
use_col_tokens: bool, |
|
resize_mode: str, |
|
normalize_mode: str, |
|
max_crops: int, |
|
overlap_margins: List[int], |
|
base_image_input_size: List[int], |
|
pad_value: float, |
|
image_patch_size: int, |
|
image_pooling_w: int, |
|
image_pooling_h: int, |
|
image_patch_token_id: int, |
|
image_col_token_id: int, |
|
image_start_token_id: int, |
|
image_end_token_id: int, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
|
""" |
|
:return image_tokens, the token IDS for this image, including special tokens |
|
:return crops, the image crops to processes with the ViT |
|
:return mask, the padding mask for each crop |
|
:return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the |
|
patches in `crops` to pool for that token, masked with -1 |
|
""" |
|
|
|
if isinstance(base_image_input_size, int): |
|
base_image_input_size = (base_image_input_size, base_image_input_size) |
|
|
|
base_image_input_d = image_patch_size |
|
pooling_w = image_pooling_w |
|
pooling_h = image_pooling_h |
|
patch_id = image_patch_token_id |
|
col_id = image_col_token_id |
|
start_id = image_start_token_id |
|
end_id = image_end_token_id |
|
crop_patch_w = base_image_input_size[1] // base_image_input_d |
|
crop_patch_h = base_image_input_size[0] // base_image_input_d |
|
|
|
if crop_mode == "resize": |
|
resized, resized_mask, resize_idx = build_resized_image( |
|
image, |
|
resize_mode, |
|
normalize_mode, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size |
|
) |
|
pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) |
|
h, w = pooling_idx.shape[:2] |
|
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) |
|
per_row = np.full( |
|
(w,), |
|
patch_id, |
|
dtype=np.int32 |
|
) |
|
if use_col_tokens: |
|
per_row = np.concatenate([per_row, [col_id]], 0) |
|
extra_tokens = np.tile(per_row, [h]) |
|
joint = [ |
|
[start_id], |
|
extra_tokens, |
|
[end_id], |
|
] |
|
return ( |
|
np.concatenate(joint, 0), |
|
batch_pixels_to_patches(resized, image_patch_size), |
|
batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1), |
|
pooling_idx, |
|
) |
|
|
|
if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]: |
|
crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops( |
|
image, |
|
resize_mode, |
|
normalize_mode, |
|
max_crops, |
|
overlap_margins, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size, |
|
) |
|
pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w) |
|
h, w = pooling_idx.shape[:2] |
|
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w]) |
|
|
|
|
|
per_row = np.full(w, patch_id, dtype=np.int32) |
|
if use_col_tokens: |
|
per_row = np.concatenate([per_row, [col_id]], 0) |
|
joint = np.tile(per_row, [h]) |
|
joint = [ |
|
[start_id], |
|
joint, |
|
[end_id] |
|
] |
|
|
|
if crop_mode == "overlap-and-resize": |
|
crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size) |
|
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) |
|
return np.concatenate(joint, 0), crop_arr, mask_arr, pooling_idx |
|
|
|
|
|
resized, resized_mask, resize_idx = build_resized_image( |
|
image, |
|
resize_mode, |
|
normalize_mode, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size |
|
) |
|
crop_arr = np.concatenate([resized, crop_arr], 0) |
|
|
|
mask_arr = np.concatenate([resized_mask, mask_arr], 0) |
|
|
|
resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w) |
|
h, w = resize_idx.shape[:2] |
|
resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w]) |
|
|
|
|
|
pooling_idx = np.where( |
|
pooling_idx >= 0, |
|
pooling_idx + crop_patch_h*crop_patch_w, |
|
-1 |
|
) |
|
pooling_idx = np.concatenate([resize_idx, pooling_idx]) |
|
|
|
per_row = np.full( |
|
(w,), |
|
patch_id, |
|
dtype=np.int32 |
|
) |
|
if use_col_tokens: |
|
per_row = np.concatenate([per_row, [col_id]], 0) |
|
extra_tokens = np.tile(per_row, [h]) |
|
joint = [ |
|
[start_id], |
|
extra_tokens, |
|
[end_id], |
|
] + joint |
|
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1) |
|
return ( |
|
np.concatenate(joint, 0), |
|
batch_pixels_to_patches(crop_arr, image_patch_size), |
|
mask_arr, |
|
pooling_idx |
|
) |
|
else: |
|
raise NotImplementedError(crop_mode) |
|
|
|
|
|
class Molmo2ImagesKwargs(ImagesKwargs, total=False): |
|
crop_mode: Optional[str] |
|
resize_mode: Optional[str] |
|
normalize_mode: Optional[str] |
|
max_crops: Optional[int] |
|
max_multi_image_crops: Optional[int] |
|
overlap_margins: Optional[List[int]] |
|
base_image_input_size: Optional[List[int]] |
|
pad_value: Optional[float] |
|
image_patch_size: Optional[int] |
|
image_pooling_w: Optional[int] |
|
image_pooling_h: Optional[int] |
|
|
|
|
|
class Molmo2ImageProcessor(BaseImageProcessor): |
|
|
|
model_input_names = ["images", "pooled_patches_idx", "image_masks"] |
|
|
|
def __init__( |
|
self, |
|
crop_mode: str = "overlap-and-resize-c2", |
|
resize_mode: str = "siglip", |
|
normalize_mode: str = "siglip", |
|
max_crops: int = 8, |
|
max_multi_image_crops: int = 4, |
|
overlap_margins: List[int] = [4, 4], |
|
base_image_input_size: List[int] = (378, 378), |
|
pad_value: float = 0.0, |
|
image_patch_size: int = 14, |
|
image_pooling_w: int = 2, |
|
image_pooling_h: int = 2, |
|
do_convert_rgb: bool = True, |
|
do_pad: Optional[bool] = True, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.crop_mode = crop_mode |
|
self.resize_mode = resize_mode |
|
self.normalize_mode = normalize_mode |
|
self.overlap_margins = overlap_margins |
|
self.max_crops = max_crops |
|
self.max_multi_image_crops = max_multi_image_crops |
|
self.overlap_margins = overlap_margins |
|
self.base_image_input_size = base_image_input_size |
|
self.pad_value = pad_value |
|
self.image_patch_size = image_patch_size |
|
self.image_pooling_w = image_pooling_w |
|
self.image_pooling_h = image_pooling_h |
|
self.do_convert_rgb = do_convert_rgb |
|
self.do_pad = do_pad |
|
|
|
def to_channel_dimension_last( |
|
self, |
|
images: List[ImageInput], |
|
) -> List[ImageInput]: |
|
""" |
|
Convert images to channel dimension last. |
|
""" |
|
new_images = [] |
|
for image in images: |
|
if is_multi_image(image): |
|
new_images.append([to_channel_dimension_format(img, ChannelDimension.LAST) for img in image]) |
|
else: |
|
new_images.append(to_channel_dimension_format(image, ChannelDimension.LAST)) |
|
return new_images |
|
|
|
def to_numpy_array( |
|
self, |
|
images: List[ImageInput], |
|
) -> List[np.ndarray]: |
|
""" |
|
Convert images to numpy array. |
|
""" |
|
new_images = [] |
|
for image in images: |
|
if is_multi_image(image): |
|
new_images.append([to_numpy_array(img) for img in image]) |
|
else: |
|
new_images.append(to_numpy_array(image)) |
|
return new_images |
|
|
|
def to_rgb( |
|
self, |
|
images: List[ImageInput], |
|
) -> List[ImageInput]: |
|
""" |
|
Convert images to RGB. |
|
""" |
|
new_images = [] |
|
for image in images: |
|
if is_multi_image(image): |
|
new_images.append([convert_to_rgb(img) for img in image]) |
|
else: |
|
new_images.append(convert_to_rgb(image)) |
|
return new_images |
|
|
|
def pad_arrays(self, arrays: List[np.ndarray], pad_value: float = -1) -> np.ndarray: |
|
max_len = max(arr.shape[0] for arr in arrays) |
|
padded_arr = np.full( |
|
[len(arrays), max_len] + list(arrays[0].shape[1:]), pad_value, dtype=arrays[0].dtype |
|
) |
|
for ix, arr in enumerate(arrays): |
|
padded_arr[ix, :len(arr)] = arr[:max_len] |
|
return padded_arr |
|
|
|
def pad_for_batching(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Pad the data for batching. |
|
""" |
|
images = self.pad_arrays(data["images"]) |
|
pooled_patches_idx = self.pad_arrays(data["pooled_patches_idx"]) |
|
image_masks = self.pad_arrays(data["image_masks"]) |
|
image_grids = self.pad_arrays(data["image_grids"]) |
|
new_data = dict( |
|
images=images, |
|
pooled_patches_idx=pooled_patches_idx, |
|
image_masks=image_masks, |
|
image_grids=image_grids, |
|
) |
|
return new_data |
|
|
|
def preprocess( |
|
self, |
|
images: Union[ImageInput, List[ImageInput]], |
|
crop_mode: Optional[str] = None, |
|
resize_mode: Optional[str] = None, |
|
normalize_mode: Optional[str] = None, |
|
max_crops: Optional[int] = None, |
|
max_multi_image_crops: Optional[int] = None, |
|
overlap_margins: Optional[List[int]] = None, |
|
base_image_input_size: Optional[List[int]] = None, |
|
pad_value: Optional[float] = None, |
|
image_patch_size: Optional[int] = None, |
|
image_pooling_w: Optional[int] = None, |
|
image_pooling_h: Optional[int] = None, |
|
do_convert_rgb: Optional[bool] = None, |
|
do_pad: Optional[bool] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**kwargs, |
|
) -> BatchFeature: |
|
""" |
|
Preprocess an image for the model. |
|
Args: |
|
image: The image to preprocess. |
|
crop_mode: The crop mode to use. If None, use the default crop mode. |
|
resize_mode: The resize mode to use. If None, use the default resize mode. |
|
normalize_mode: The normalization mode to use. If None, use the default normalization mode. |
|
max_crops: The maximum number of crops to use. If None, use the default value. |
|
max_multi_image_crops: The maximum number of crops to use for multi-image inputs. |
|
overlap_margins: The overlap margins to use. If None, use the default values. |
|
base_image_input_size: The base image input size to use. If None, use the default size. |
|
pad_value: The padding value to use. If None, use the default value. |
|
image_patch_size: The size of the image patches. If None, use the default size. |
|
image_pooling_h: The height of the image pooling. If None, use the default height. |
|
image_pooling_w: The width of the image pooling. If None, use the default width. |
|
do_convert_rgb: Whether to convert the image to RGB. If None, use the default value. |
|
do_pad: Whether to pad image features. If None, use the default value. |
|
|
|
Returns: |
|
A tuple containing: |
|
- The image grids |
|
- The preprocessed images |
|
- The padding masks |
|
- The pooling indices |
|
""" |
|
images = make_batched_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError("Invalid image input") |
|
|
|
crop_mode = crop_mode or self.crop_mode |
|
normalize_mode = normalize_mode or self.normalize_mode |
|
resize_mode = resize_mode or self.resize_mode |
|
max_crops = max_crops or self.max_crops |
|
max_multi_image_crops = max_multi_image_crops or self.max_multi_image_crops |
|
overlap_margins = overlap_margins or self.overlap_margins |
|
base_image_input_size = base_image_input_size or self.base_image_input_size |
|
pad_value = pad_value or self.pad_value |
|
image_patch_size = image_patch_size or self.image_patch_size |
|
image_pooling_w = image_pooling_w or self.image_pooling_w |
|
image_pooling_h = image_pooling_h or self.image_pooling_h |
|
do_convert_rgb = do_convert_rgb or self.do_convert_rgb |
|
do_pad = do_pad or self.do_pad |
|
|
|
if do_convert_rgb: |
|
images = self.to_rgb(images) |
|
|
|
|
|
images = self.to_numpy_array(images) |
|
|
|
|
|
images = self.to_channel_dimension_last(images) |
|
|
|
batch_image_grids = [] |
|
batch_crops = [] |
|
batch_crop_masks = [] |
|
batch_pooled_patches_idx = [] |
|
|
|
for image in images: |
|
if is_multi_image(image): |
|
all_image_grids = [] |
|
all_crops = [] |
|
all_crop_masks = [] |
|
pooled_patches_idx = [] |
|
for img in image: |
|
image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids( |
|
img, |
|
crop_mode, |
|
resize_mode, |
|
normalize_mode, |
|
max_multi_image_crops, |
|
overlap_margins, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size, |
|
image_pooling_w, |
|
image_pooling_h, |
|
) |
|
pooled_patches_idx.append(pooled_idx + sum(np.prod(x.shape[:2]) for x in all_crops)) |
|
all_crops.append(crops) |
|
all_crop_masks.append(img_mask) |
|
all_image_grids.append(image_grid) |
|
all_image_grids = np.concatenate(all_image_grids, 0) |
|
all_crops = np.concatenate(all_crops, 0) |
|
all_crop_masks = np.concatenate(all_crop_masks, 0) |
|
pooled_patches_idx = np.concatenate(pooled_patches_idx, 0) |
|
|
|
batch_image_grids.append(all_image_grids) |
|
batch_crops.append(all_crops) |
|
batch_crop_masks.append(all_crop_masks) |
|
batch_pooled_patches_idx.append(pooled_patches_idx) |
|
else: |
|
image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids( |
|
image, |
|
crop_mode, |
|
resize_mode, |
|
normalize_mode, |
|
max_crops, |
|
overlap_margins, |
|
base_image_input_size, |
|
pad_value, |
|
image_patch_size, |
|
image_pooling_w, |
|
image_pooling_h, |
|
) |
|
batch_image_grids.append(image_grid) |
|
batch_crops.append(crops) |
|
batch_crop_masks.append(img_mask) |
|
batch_pooled_patches_idx.append(pooled_idx) |
|
|
|
data =dict( |
|
images=batch_crops, |
|
pooled_patches_idx=batch_pooled_patches_idx, |
|
image_masks=batch_crop_masks, |
|
image_grids=batch_image_grids, |
|
) |
|
|
|
if do_pad: |
|
data = self.pad_for_batching(data) |
|
|
|
return BatchFeature(data, tensor_type=return_tensors) |
|
|
|
|
|
Molmo2ImageProcessor.register_for_auto_class() |