|
import math |
|
from copy import deepcopy |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from transformers.models.auto import AutoModelForCausalLM, AutoModelForImageTextToText |
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.generation.configuration_utils import GenerationConfig |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.integrations import use_kernel_forward_from_hub |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward, FlashAttentionKwargs |
|
from transformers import GradientCheckpointingLayer |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPast, |
|
BaseModelOutputWithPooling, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import ( |
|
ModelOutput, |
|
can_return_tuple, |
|
is_torch_flex_attn_available, |
|
logging, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
) |
|
|
|
from .configuration_molmo2 import Molmo2Config, Molmo2VitConfig, Molmo2AdapterConfig, Molmo2LlmConfig |
|
|
|
|
|
if is_torch_flex_attn_available(): |
|
from torch.nn.attention.flex_attention import BlockMask |
|
|
|
from transformers.integrations.flex_attention import make_flex_block_causal_mask |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
MOLMO_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Molmo2Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@dataclass |
|
class Molmo2CausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for Molmo2 causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. |
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
@dataclass |
|
class Molmo2ModelOutputWithPast(BaseModelOutputWithPast): |
|
""" |
|
Base class for Molmo2 outputs, with hidden states and attentions. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size `(batch_num_patches, hidden_size)`. |
|
image_hidden_states of the model produced by the vision backbone |
|
""" |
|
|
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class Molmo2PreTrainedModel(PreTrainedModel): |
|
config_class = Molmo2LlmConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Molmo2DecoderLayer", "Molmo2PostNormDecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = False |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear,)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, Molmo2Embedding): |
|
module.embedding.data.normal_(mean=0.0, std=std) |
|
module.new_embedding.data.normal_(mean=0.0, std=std) |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, Molmo2RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.weight.data.fill_(1.0) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
class ViTMLP(nn.Module): |
|
def __init__(self, dim: int, hidden_dim: int, hidden_act: str, device: Union[str, torch.device] = None): |
|
super().__init__() |
|
self.w1 = nn.Linear(dim, hidden_dim, bias=True, device=device) |
|
self.act = ACT2FN[hidden_act] |
|
self.w2 = nn.Linear(hidden_dim, dim, bias=True, device=device) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.w2(self.act(self.w1(x))) |
|
|
|
|
|
class ViTMultiHeadDotProductAttention(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
num_key_value_heads: int, |
|
head_dim: int, |
|
use_bias: bool = True, |
|
input_dim: Optional[int] = None, |
|
float32_attention: bool = True, |
|
attention_dropout: float = 0.0, |
|
residual_dropout: float = 0.0, |
|
device: Union[str, torch.device] = None, |
|
attn_implementation: str = "eager", |
|
): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
self.head_dim = head_dim |
|
self.num_key_value_heads = num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.attn_implementation = attn_implementation |
|
self.is_causal = False |
|
|
|
input_dim = input_dim or hidden_size |
|
|
|
self.wq = nn.Linear( |
|
input_dim, |
|
self.num_heads * self.head_dim, |
|
bias=use_bias, |
|
device=device, |
|
) |
|
self.wk = nn.Linear( |
|
input_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=device, |
|
) |
|
self.wv = nn.Linear( |
|
input_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=use_bias, |
|
device=device, |
|
) |
|
self.wo = nn.Linear( |
|
self.num_heads * self.head_dim, |
|
self.hidden_size, |
|
) |
|
self.float32_attention = float32_attention |
|
self.attention_dropout = attention_dropout |
|
self.residual_dropout = nn.Dropout(residual_dropout) |
|
|
|
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor: |
|
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) |
|
|
|
def _merge_heads(self, hidden_states) -> torch.Tensor: |
|
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) |
|
|
|
def forward( |
|
self, |
|
inputs_q: torch.Tensor, |
|
inputs_kv: Optional[torch.Tensor] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
|
|
if inputs_kv is not None: |
|
inputs_k = inputs_kv |
|
inputs_v = inputs_kv |
|
else: |
|
inputs_k = inputs_q |
|
inputs_v = inputs_q |
|
|
|
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v) |
|
|
|
xq = self._split_heads(xq, self.num_heads) |
|
xk = self._split_heads(xk, self.num_key_value_heads) |
|
xv = self._split_heads(xv, self.num_key_value_heads) |
|
|
|
if self.num_heads != self.num_key_value_heads: |
|
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) |
|
|
|
og_dtype = xq.dtype |
|
|
|
if self.float32_attention: |
|
xq = xq.to(torch.float) |
|
xk = xk.to(torch.float) |
|
|
|
dropout_p = 0.0 if not self.training else self.attention_dropout |
|
|
|
if self.attn_implementation == "eager": |
|
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk) |
|
attn_weights = F.softmax(attn_weights, dim=-1) |
|
attn_weights = F.dropout( |
|
attn_weights, |
|
p=dropout_p, |
|
training=self.training |
|
) |
|
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv) |
|
|
|
elif self.attn_implementation == "sdpa": |
|
if not torch.is_autocast_enabled(): |
|
xv = xv.to(torch.float) |
|
|
|
attn_output = F.scaled_dot_product_attention( |
|
xq.transpose(1, 2).contiguous(), |
|
xk.transpose(1, 2).contiguous(), |
|
xv.transpose(1, 2).contiguous(), |
|
attn_mask=attn_mask, |
|
is_causal=False, |
|
dropout_p=dropout_p, |
|
).transpose(1, 2) |
|
|
|
elif self.attn_implementation == "flash_attention_2": |
|
assert not self.config.float32_attention |
|
|
|
attn_output = _flash_attention_forward( |
|
xq.transpose(1, 2).to(torch.bfloat16), |
|
xk.transpose(1, 2).to(torch.bfloat16), |
|
xv.transpose(1, 2).to(torch.bfloat16), |
|
attention_mask=None, |
|
query_length=inputs_q.shape[1], |
|
is_causal=False, |
|
dropout=dropout_p, |
|
) |
|
else: |
|
raise ValueError(f"Attention implementation {self.attn_implementation} not supported") |
|
|
|
attn_output = attn_output.to(og_dtype) |
|
attn_output = self._merge_heads(attn_output) |
|
attn_output = self.wo(attn_output) |
|
attn_output = self.residual_dropout(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class Molmo2VisionBlock(nn.Module): |
|
|
|
def __init__(self, config: Molmo2VitConfig, device: Union[str, torch.device] = None): |
|
super().__init__() |
|
self.attention = ViTMultiHeadDotProductAttention( |
|
hidden_size=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
num_key_value_heads=config.num_key_value_heads, |
|
head_dim=config.head_dim, |
|
float32_attention=config.float32_attention, |
|
attention_dropout=config.attention_dropout, |
|
residual_dropout=config.residual_dropout, |
|
device=device, |
|
attn_implementation=config._attn_implementation, |
|
) |
|
self.feed_forward = ViTMLP(config.hidden_size, config.intermediate_size, config.hidden_act, device=device) |
|
self.attention_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) |
|
self.ffn_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x + self.attention(self.attention_norm(x)) |
|
x = x + self.feed_forward(self.ffn_norm(x)) |
|
return x |
|
|
|
|
|
class Molmo2VisionBlockCollection(nn.Module): |
|
|
|
def __init__(self, config: Molmo2VitConfig, device: Union[str, torch.device] = None): |
|
super().__init__() |
|
self.conifg = config |
|
self.resblocks = nn.ModuleList([ |
|
Molmo2VisionBlock(config, device) for _ in range(config.num_hidden_layers) |
|
]) |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
hidden_states = [] |
|
for r in self.resblocks: |
|
x = r(x) |
|
hidden_states.append(x) |
|
return hidden_states |
|
|
|
|
|
class Molmo2VisionTransformer(nn.Module): |
|
|
|
def __init__(self, config: Molmo2VitConfig, device: Union[str, torch.device] = None): |
|
super().__init__() |
|
self.config = config |
|
|
|
|
|
self.scale = config.hidden_size ** -0.5 |
|
self.num_prefix_tokens: int = 0 |
|
self.positional_embedding = nn.Parameter( |
|
torch.zeros(config.image_num_pos, config.hidden_size, device=device), |
|
) |
|
|
|
image_patch_size = config.image_patch_size |
|
self.patch_embedding = nn.Linear( |
|
image_patch_size * image_patch_size * 3, |
|
config.hidden_size, |
|
bias=True, |
|
device=device, |
|
) |
|
|
|
self.transformer = Molmo2VisionBlockCollection(config, device) |
|
|
|
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor: |
|
pos_emb = self.positional_embedding |
|
|
|
pos_emb = pos_emb.reshape( |
|
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]) |
|
) |
|
|
|
(patch_num_0, patch_num_1) = patch_num |
|
|
|
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: |
|
|
|
|
|
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2) |
|
pos_emb = F.interpolate( |
|
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True, |
|
) |
|
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0) |
|
|
|
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1]) |
|
x = x + pos_emb[None, :, :].to(x.dtype) |
|
return x |
|
|
|
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]: |
|
""" |
|
: param x: (batch_size, num_patch, n_pixels) |
|
""" |
|
if patch_num is None: |
|
patch_num = self.config.image_num_patch |
|
|
|
B, N, D = x.shape |
|
|
|
x = self.patch_embedding(x) |
|
|
|
|
|
x = self.add_pos_emb(x, patch_num) |
|
|
|
hidden_states = self.transformer(x) |
|
return hidden_states |
|
|
|
|
|
class ImageProjectorMLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
input_dim: int, |
|
hidden_dim: int, |
|
output_dim: int, |
|
hidden_act: str, |
|
device: Union[str, torch.device] = None, |
|
): |
|
super().__init__() |
|
self.w1 = nn.Linear(input_dim, hidden_dim, bias=False, device=device) |
|
self.w2 = nn.Linear(hidden_dim, output_dim, bias=False, device=device) |
|
self.w3 = nn.Linear(input_dim, hidden_dim, bias=False, device=device) |
|
self.act = ACT2FN[hidden_act] |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.w2(self.act(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class Molmo2VisionBackbone(nn.Module): |
|
def __init__(self, vit_config: Molmo2VitConfig, adapter_config: Molmo2AdapterConfig): |
|
super().__init__() |
|
self.vit_config = vit_config |
|
self.adapter_config = adapter_config |
|
|
|
self.vit_layers = [] |
|
for layer in adapter_config.vit_layers: |
|
if layer >= 0: |
|
self.vit_layers.append(layer) |
|
else: |
|
self.vit_layers.append(layer + vit_config.num_hidden_layers) |
|
|
|
last_layer_needed = max(self.vit_layers) + 1 |
|
if last_layer_needed < vit_config.num_hidden_layers: |
|
new_vit_config = deepcopy(vit_config) |
|
new_vit_config.num_hidden_layers = last_layer_needed |
|
self.image_vit = Molmo2VisionTransformer(new_vit_config) |
|
else: |
|
self.image_vit = Molmo2VisionTransformer(vit_config) |
|
|
|
self.num_prefix_tokens: int = self.image_vit.num_prefix_tokens |
|
|
|
pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers) |
|
self.image_pooling_2d = ViTMultiHeadDotProductAttention( |
|
hidden_size=adapter_config.hidden_size, |
|
num_heads=adapter_config.num_attention_heads, |
|
num_key_value_heads=adapter_config.num_key_value_heads, |
|
head_dim=adapter_config.head_dim, |
|
input_dim=pool_dim, |
|
float32_attention=adapter_config.float32_attention, |
|
attention_dropout=adapter_config.attention_dropout, |
|
residual_dropout=adapter_config.residual_dropout, |
|
attn_implementation=adapter_config._attn_implementation, |
|
) |
|
self.image_projector = ImageProjectorMLP( |
|
adapter_config.hidden_size, |
|
adapter_config.intermediate_size, |
|
adapter_config.text_hidden_size, |
|
adapter_config.hidden_act, |
|
) |
|
self.image_feature_dropout = nn.Dropout(adapter_config.image_feature_dropout) |
|
|
|
def encode_image(self, images: torch.Tensor) -> torch.Tensor: |
|
""" |
|
: param images: (batch_size, num_crops, num_patch, n_pixels) |
|
""" |
|
B, T, N, D = images.shape |
|
images = images.view(B * T, N, D) |
|
image_features = self.image_vit(images) |
|
|
|
features = [] |
|
for layer in self.vit_layers: |
|
features.append(image_features[layer]) |
|
image_features = torch.cat(features, dim=-1) |
|
|
|
if self.num_prefix_tokens > 0: |
|
image_features = image_features[:, 1:] |
|
image_features = image_features.view(B, T, N, -1) |
|
return image_features |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
return self.image_vit.patch_embedding.weight.dtype |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self.image_vit.patch_embedding.weight.device |
|
|
|
def forward( |
|
self, |
|
images: torch.Tensor, |
|
pooled_patches_idx: torch.Tensor, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
|
|
|
batch_size, num_image = images.shape[:2] |
|
images = images.to(device=self.device, dtype=self.dtype) |
|
image_features = self.encode_image(images) |
|
|
|
image_features = self.image_feature_dropout(image_features) |
|
dim = image_features.shape[-1] |
|
valid = pooled_patches_idx >= 0 |
|
valid_token = torch.any(valid, -1) |
|
|
|
|
|
batch_idx = torch.arange(pooled_patches_idx.shape[0], dtype=torch.long, device=pooled_patches_idx.device) |
|
batch_idx = torch.tile(batch_idx.view(batch_size, 1, 1), [1, pooled_patches_idx.shape[1], pooled_patches_idx.shape[2]]) |
|
|
|
|
|
to_pool = image_features.reshape(batch_size, -1, dim)[batch_idx, torch.clip(pooled_patches_idx, 0)] |
|
to_pool = to_pool * valid.to(self.dtype)[:, :, :, None] |
|
to_pool = to_pool.reshape([-1, pooled_patches_idx.shape[-1], dim]) |
|
|
|
query = to_pool.mean(-2, keepdim=True) |
|
pooled_features = self.image_pooling_2d(query, to_pool) |
|
pooled_features = pooled_features.reshape([batch_size, -1, pooled_features.shape[-1]]) |
|
|
|
|
|
pooled_features = self.image_projector(pooled_features) |
|
return pooled_features.view(-1, pooled_features.shape[-1])[valid_token.flatten()] |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
|
|
class Molmo2RotaryEmbedding(nn.Module): |
|
|
|
def __init__(self, config: Molmo2LlmConfig, device: Union[str, torch.device] = None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update |
|
def forward(self, x, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
class Molmo2RMSNorm(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
eps: float = 1e-6, |
|
device: Union[str, torch.device] = None, |
|
): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(size, device=device)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
with torch.autocast(enabled=False, device_type=x.device.type): |
|
og_dtype = x.dtype |
|
x = x.to(torch.float32) |
|
variance = x.pow(2).mean(-1, keepdim=True) |
|
x = x * torch.rsqrt(variance + self.eps) |
|
x = x.to(og_dtype) |
|
|
|
return self.weight * x |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.eps}" |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class Molmo2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: Molmo2LlmConfig, layer_idx: Optional[int] = None) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.head_dim = config.head_dim |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_causal = True |
|
|
|
if (config.head_dim * config.num_attention_heads) != config.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {config.hidden_size}" |
|
f" and `num_attention_heads`: {config.num_attention_heads})." |
|
) |
|
|
|
self.fused_dims = ( |
|
config.hidden_size, |
|
config.head_dim * config.num_key_value_heads, |
|
config.head_dim * config.num_key_value_heads, |
|
) |
|
self.att_proj = nn.Linear( |
|
config.hidden_size, |
|
sum(self.fused_dims), |
|
bias=config.qkv_bias, |
|
) |
|
|
|
|
|
self.k_norm: Optional[Molmo2RMSNorm] = None |
|
self.q_norm: Optional[Molmo2RMSNorm] = None |
|
self.qk_norm_type: Optional[str] = None |
|
if config.use_qk_norm: |
|
k_norm_size = ( |
|
config.head_dim |
|
if config.qk_norm_type == "olmo" else |
|
config.num_key_value_heads * config.head_dim |
|
) |
|
self.k_norm = Molmo2RMSNorm(k_norm_size, eps=config.layer_norm_eps) |
|
q_norm_size = ( |
|
config.head_dim |
|
if config.qk_norm_type == "olmo" else |
|
config.num_attention_heads * config.head_dim |
|
) |
|
self.q_norm = Molmo2RMSNorm(q_norm_size, eps=config.layer_norm_eps) |
|
self.qk_norm_type = config.qk_norm_type |
|
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
self.attn_out = nn.Linear( |
|
config.hidden_size, |
|
config.hidden_size, |
|
bias=False, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
qkv = self.att_proj(hidden_states) |
|
query_states, key_states, value_states = qkv.split(self.fused_dims, dim=-1) |
|
value_states = value_states.view(hidden_shape) |
|
|
|
|
|
if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type != "qwen3": |
|
query_states = self.q_norm(query_states) |
|
key_states = self.k_norm(key_states) |
|
|
|
query_states = query_states.view(hidden_shape) |
|
key_states = key_states.view(hidden_shape) |
|
if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type == "qwen3": |
|
query_states = self.q_norm(query_states) |
|
key_states = self.k_norm(key_states) |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): |
|
logger.warning_once( |
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " |
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
else: |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.attn_out(attn_output) |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class LanguageModelMLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
input_dim: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
device: Union[str, torch.device] = None, |
|
): |
|
super().__init__() |
|
self.ff_proj = nn.Linear(input_dim, intermediate_size * 2, bias=False, device=device) |
|
self.ff_out = nn.Linear(intermediate_size, input_dim, bias=False, device=device) |
|
self.act = ACT2FN[hidden_act] |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.ff_proj(x) |
|
x, gate = x.chunk(2, dim=-1) |
|
x = self.act(gate) * x |
|
x = self.ff_out(x) |
|
return x |
|
|
|
|
|
class Molmo2DecoderLayer(GradientCheckpointingLayer): |
|
|
|
def __init__( |
|
self, |
|
config: Molmo2LlmConfig, |
|
layer_idx: Optional[int] = None, |
|
device: Union[str, torch.device] = None |
|
): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.self_attn = Molmo2Attention(config, layer_idx) |
|
self.attn_norm = Molmo2RMSNorm( |
|
config.hidden_size, eps=config.layer_norm_eps, device=device) |
|
self.dropout = nn.Dropout(config.residual_dropout) |
|
self.mlp = LanguageModelMLP( |
|
config.hidden_size, config.intermediate_size, config.hidden_act, device=device) |
|
self.ff_norm = Molmo2RMSNorm( |
|
config.hidden_size, eps=config.layer_norm_eps, device=device) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
with `head_dim` being the embedding dimension of each attention head. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
residual = hidden_states |
|
hidden_states = self.attn_norm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
hidden_states = residual + self.dropout(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.ff_norm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + self.dropout(hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class Molmo2PostNormDecoderLayer(Molmo2DecoderLayer): |
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
with `head_dim` being the embedding dimension of each attention head. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
hidden_states = self.attn_norm(hidden_states) |
|
|
|
hidden_states = residual + self.dropout(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = self.ff_norm(hidden_states) |
|
|
|
hidden_states = residual + self.dropout(hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class Molmo2Embedding(nn.Module): |
|
def __init__( |
|
self, |
|
num_embeddings: int, |
|
num_new_embeddings: int, |
|
features: int, |
|
device: Union[str, torch.device] = None, |
|
): |
|
super().__init__() |
|
self.embedding = nn.Parameter( |
|
torch.zeros(num_embeddings, features, device=device), |
|
) |
|
self.new_embedding = nn.Parameter( |
|
torch.zeros(num_new_embeddings, features, device=device), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0)) |
|
|
|
|
|
MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance, see our |
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`CausalLMOutputWithPast`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Molmo2 text-only model outputting raw hidden-states without any specific head on top.", |
|
MOLMO_START_DOCSTRING, |
|
) |
|
class Molmo2Llm(Molmo2PreTrainedModel): |
|
def __init__(self, config: Molmo2LlmConfig): |
|
super().__init__(config) |
|
self.config = config |
|
if config.additional_vocab_size is not None: |
|
self.wte = Molmo2Embedding( |
|
config.vocab_size, |
|
config.additional_vocab_size, |
|
config.hidden_size, |
|
) |
|
else: |
|
self.wte = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.emb_drop = nn.Dropout(config.embedding_dropout) |
|
decoder_layer = Molmo2PostNormDecoderLayer if config.norm_after else Molmo2DecoderLayer |
|
self.blocks = nn.ModuleList( |
|
[decoder_layer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.ln_f = Molmo2RMSNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.rotary_emb = Molmo2RotaryEmbedding(config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module) -> None: |
|
self.wte = value |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> BaseModelOutputWithPast: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
if inputs_embeds is None: |
|
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for decoder_block in self.blocks[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = decoder_block( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: Union[torch.Tensor, "BlockMask"], |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool = False, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and (attention_mask == 0.0).any(): |
|
return attention_mask |
|
return None |
|
if self.config._attn_implementation == "flex_attention": |
|
if isinstance(attention_mask, torch.Tensor): |
|
attention_mask = make_flex_block_causal_mask(attention_mask) |
|
return attention_mask |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype = input_tensor.dtype |
|
sequence_length = input_tensor.shape[1] |
|
if using_compilable_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu", "npu"] |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
**kwargs, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape |
|
`(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, |
|
to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
@add_start_docstrings( |
|
"The Molmo2 text-only model which consists of a language model + lm head.", |
|
MOLMO_START_DOCSTRING, |
|
) |
|
class Molmo2ForCausalLM(Molmo2PreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = [] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
base_model_prefix = "model" |
|
|
|
def __init__(self, config: Molmo2LlmConfig): |
|
super().__init__(config) |
|
self.model = Molmo2Llm(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.model.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module) -> None: |
|
self.model.wte = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, value: torch.nn.Module) -> None: |
|
self.lm_head = value |
|
|
|
def set_decoder(self, decoder: torch.nn.Module) -> None: |
|
self.model = decoder |
|
|
|
def get_decoder(self) -> torch.nn.Module: |
|
return self.model |
|
|
|
@can_return_tuple |
|
@add_start_docstrings_to_model_forward(MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**kwargs, |
|
) -> CausalLMOutputWithPast: |
|
r""" |
|
```python |
|
>>> from transformers import AutoTokenizer, Molmo2ForCausalLM |
|
|
|
>>> model = Molmo2ForCausalLM.from_pretrained("...") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("...") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
MOLMO2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
images (`torch.FloatTensor` of shape `(batch_size, n_crops, 27*27, 3*14*14)`, *optional*): |
|
The input crops in with pixel values between 0 and 1 and normalized with SigLIP2 mean/std |
|
|
|
Each crop contains 27x27 patches with 14*14*3 pixel values |
|
image_masks (`torch.FloatTensor` of shape `(batch_size, n_crops, n_patches, n_features)`, *optional*): |
|
Image masks showing what percent of each patch is paddding |
|
pooled_patches_idx (`torch.LongTensor` of shape `(batch_size, n_image_tokens, n_pooled_patches)`): |
|
For each patch_id tokens in `input_ids`, the indices of the patches in `images` |
|
to pool for that token, masked with -1 |
|
means ignore the patch. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance, see our |
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`Molmo2CausalLMOutputWithPast`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Molmo2 model outputting raw hidden-states without any specific head on top.", |
|
MOLMO_START_DOCSTRING, |
|
) |
|
class Molmo2Model(Molmo2PreTrainedModel): |
|
_checkpoint_conversion_mapping = {} |
|
|
|
def __init__(self, config: Molmo2Config): |
|
super().__init__(config) |
|
self.transformer: Molmo2Llm = Molmo2Llm(config.llm_config) |
|
self.vision_backbone: Optional[Molmo2VisionBackbone] = None |
|
if config.vit_config is not None and config.adapter_config is not None: |
|
self.vision_backbone = Molmo2VisionBackbone(config.vit_config, config.adapter_config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.transformer.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module) -> None: |
|
self.transformer.wte = value |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self.transformer.ln_f.weight.device |
|
|
|
def build_input_embeddings( |
|
self, |
|
input_ids: torch.LongTensor, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
pooled_patches_idx: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
|
|
|
|
|
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) |
|
x = self.transformer.wte(input_ids) |
|
|
|
image_features: Optional[torch.FloatTensor] = None |
|
if images is not None: |
|
image_features = self.vision_backbone(images, pooled_patches_idx) |
|
is_image_patch = input_ids.view(-1) == self.config.image_patch_id |
|
assert is_image_patch.sum() == len(image_features) |
|
x.view(-1, x.shape[-1])[is_image_patch] += image_features |
|
|
|
|
|
x = self.transformer.emb_drop(x) |
|
|
|
return x, image_features |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
pooled_patches_idx: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, Molmo2ModelOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if images is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both images and inputs_embeds at the same time." |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds, image_features = self.build_input_embeddings( |
|
input_ids, images, image_masks, pooled_patches_idx) |
|
|
|
outputs = self.transformer( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
) |
|
|
|
return Molmo2ModelOutputWithPast( |
|
last_hidden_state=outputs.last_hidden_state, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=image_features if images is not None else None, |
|
) |
|
|
|
@add_start_docstrings( |
|
"The Molmo2 model which consists of a vision backbone and a language model + lm head.", |
|
MOLMO_START_DOCSTRING, |
|
) |
|
class Molmo2ForConditionalGeneration(Molmo2PreTrainedModel, GenerationMixin): |
|
_checkpoint_conversion_mapping = {} |
|
_tied_weights_keys = [] |
|
config_class = Molmo2Config |
|
|
|
def __init__(self, config: Molmo2Config): |
|
super().__init__(config) |
|
|
|
self.model = Molmo2Model(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.model.transformer.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module) -> None: |
|
self.model.transformer.wte = value |
|
|
|
def get_output_embeddings(self): |
|
self.lm_head |
|
|
|
def set_output_embeddings(self, value: torch.nn.Module) -> None: |
|
self.lm_head = value |
|
|
|
|
|
@property |
|
def language_model(self) -> torch.nn.Module: |
|
return self.model.transformer |
|
|
|
@property |
|
def vision_backbone(self) -> torch.nn.Module: |
|
return self.model.vision_backbone |
|
|
|
@can_return_tuple |
|
@add_start_docstrings_to_model_forward(MOLMO2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
pooled_patches_idx: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**kwargs, |
|
) -> Union[Tuple, Molmo2CausalLMOutputWithPast]: |
|
r""" |
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, Molmo2ForConditionalGeneration |
|
|
|
>>> model = Molmo2ForConditionalGeneration.from_pretrained("...") |
|
>>> processor = AutoProcessor.from_pretrained("...") |
|
|
|
>>> prompt = "What's the content of the image?" |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, text=prompt, apply_chat_template=True, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generated_ids = model.generate(**inputs, max_new_tokens=15) |
|
>>> generated_tokens = generated_ids[:, inputs['input_ids'].size(1):] |
|
>>> processor.batch_decode(generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"The image features a busy city street with a stop sign prominently displayed" |
|
```""" |
|
outputs = self.model( |
|
input_ids=input_ids, |
|
images=images, |
|
image_masks=image_masks, |
|
pooled_patches_idx=pooled_patches_idx, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size) |
|
|
|
return Molmo2CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=outputs.image_hidden_states, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_masks: Optional[torch.Tensor] = None, |
|
pooled_patches_idx: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Optional[Union[int, torch.Tensor]] = None, |
|
**kwargs, |
|
): |
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
logits_to_keep=logits_to_keep, |
|
**kwargs, |
|
) |
|
|
|
if cache_position[0] == 0: |
|
model_inputs["images"] = images |
|
model_inputs["pooled_patches_idx"] = pooled_patches_idx |
|
model_inputs["image_masks"] = image_masks |
|
|
|
return model_inputs |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
num_new_tokens: int = 1, |
|
) -> Dict[str, Any]: |
|
if model_kwargs["use_cache"] and "images" in model_kwargs: |
|
|
|
|
|
for k in ["images", "image_masks", "pooled_patches_idx"]: |
|
del model_kwargs[k] |
|
return super()._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder, num_new_tokens) |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
**kwargs, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape |
|
`(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, |
|
to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
|
|
AutoModelForImageTextToText.register(Molmo2Config, Molmo2ForConditionalGeneration) |
|
AutoModelForCausalLM.register(Molmo2LlmConfig, Molmo2ForCausalLM) |