Jorgvt commited on
Commit
882489a
·
verified ·
1 Parent(s): 1387cc6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -74
README.md CHANGED
@@ -1,74 +1,75 @@
1
- ---
2
- license: apache-2.0
3
- tags:
4
- - jax
5
- - safetensors
6
- ---
7
-
8
- # Parametric PerceptNet Bio-Fitted
9
-
10
- ## Model Description
11
-
12
- ## How to use it
13
-
14
- ### Install the model's package from source:
15
- ```
16
- git clone https://github.com/Jorgvt/paramperceptnet.git
17
- cd paramperceptnet
18
- pip install -e .
19
- ```
20
-
21
- ### 1.Import necessary libraries:
22
-
23
- ```
24
- import json
25
-
26
- from huggingface_hub import hf_hub_download
27
- import flax
28
- import orbax.checkpoint
29
- from ml_collections import ConfigDict
30
-
31
- from paramperceptnet.models import PerceptNet
32
- ```
33
-
34
- ### 2.Download the configuration
35
-
36
- ```
37
- config_path = hf_hub_download(repo_id="Jorgvt/ppnet-bio-fitted",
38
- filename="config.json")
39
- with open(config_path, "r") as f:
40
- config = ConfigDict(json.load(f))
41
- ```
42
-
43
- ### 3. Download the weights
44
-
45
- #### 3.1. Using `safetensors`
46
-
47
- ```
48
- from safetensors.flax import load_file
49
-
50
- weights_path = hf_hub_download(repo_id="Jorgvt/ppnet-bio-fitted",
51
- filename="weights.safetensors")
52
- variables = load_file(weights_path)
53
- variables = flax.traverse_util.unflatten_dict(variables, sep=".")
54
- state = variables["state"]
55
- params = variables["params"]
56
- ```
57
-
58
- #### 3.2. Using `mgspack`
59
- ```
60
- weights_path = hf_hub_download(repo_id="Jorgvt/ppnet-bio-fitted",
61
- filename="weights.msgpack")
62
- with open(weights_path, "rb") as f:
63
- variables = orbax.checkpoint.msgpack_utils.msgpack_restore(f.read())
64
- variables = jax.tree_util.tree_map(lambda x: jnp.array(x), variables)
65
- state = variables["state"]
66
- params = variables["params"]
67
- ```
68
-
69
- ### 4. Use the model
70
-
71
- ```
72
- from jax import numpy as jnp
73
- pred = model.apply({"params": params, **state}, jnp.ones((1,384,512,3)))
74
- ```
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - jax
5
+ - safetensors
6
+ ---
7
+
8
+ # Parametric PerceptNet Bio-Fitted
9
+
10
+ ## Model Description
11
+
12
+ ## How to use it
13
+
14
+ ### Install the model's package from source:
15
+ ```
16
+ git clone https://github.com/Jorgvt/paramperceptnet.git
17
+ cd paramperceptnet
18
+ pip install -e .
19
+ ```
20
+
21
+ ### 1.Import necessary libraries:
22
+
23
+ ```
24
+ import json
25
+
26
+ from huggingface_hub import hf_hub_download
27
+ import flax
28
+ import orbax.checkpoint
29
+ from ml_collections import ConfigDict
30
+
31
+ from paramperceptnet.models import PerceptNet
32
+ ```
33
+
34
+ ### 2.Download the configuration
35
+
36
+ ```
37
+ config_path = hf_hub_download(repo_id="Jorgvt/ppnet-bio-fitted",
38
+ filename="config.json")
39
+ with open(config_path, "r") as f:
40
+ config = ConfigDict(json.load(f))
41
+ ```
42
+
43
+ ### 3. Download the weights
44
+
45
+ #### 3.1. Using `safetensors`
46
+
47
+ ```
48
+ from safetensors.flax import load_file
49
+
50
+ weights_path = hf_hub_download(repo_id="Jorgvt/ppnet-bio-fitted",
51
+ filename="weights.safetensors")
52
+ variables = load_file(weights_path)
53
+ variables = flax.traverse_util.unflatten_dict(variables, sep=".")
54
+ state = variables["state"]
55
+ params = variables["params"]
56
+ ```
57
+
58
+ #### 3.2. Using `mgspack`
59
+ ```
60
+ weights_path = hf_hub_download(repo_id="Jorgvt/ppnet-bio-fitted",
61
+ filename="weights.msgpack")
62
+ with open(weights_path, "rb") as f:
63
+ variables = orbax.checkpoint.msgpack_utils.msgpack_restore(f.read())
64
+ variables = jax.tree_util.tree_map(lambda x: jnp.array(x), variables)
65
+ state = variables["state"]
66
+ params = variables["params"]
67
+ ```
68
+
69
+ ### 4. Use the model
70
+
71
+ ```
72
+ from jax import numpy as jnp
73
+ model = PerceptNet(config)
74
+ pred = model.apply({"params": params, **state}, jnp.ones((1,384,512,3)))
75
+ ```