File size: 1,068 Bytes
514d504
 
cc44585
 
 
 
 
 
514d504
 
cc44585
514d504
cc44585
514d504
cc44585
514d504
cc44585
 
 
 
 
514d504
cc44585
514d504
cc44585
 
514d504
cc44585
514d504
cc44585
 
 
514d504
cc44585
514d504
cc44585
 
514d504
cc44585
 
514d504
cc44585
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
tags:
- topic-modeling
- bertopic
- university
- admissions
- mmr
- keybert
---

# ๐Ÿง  bertopic-admissions-mmr-keybert

This model is a fine-tuned BERTopic model for clustering university admissions-related questions and documents using Maximal Marginal Relevance (MMR) and KeyBERT-based keyword generation.

## ๐Ÿ—๏ธ Model Details

**Base Model:** BERTopic (HuggingFace Transformers + UMAP + HDBSCAN)  
**Embedding Model:** `all-MiniLM-L6-v2`  
**Keyword Method:** MMR + KeyBERT  
**Training Data:** 50-question CSV dataset on university admissions topics  
**Date Trained:** April 2025  

## ๐Ÿ“Š Intended Use

- Question clustering for FAQ and chatbot systems  
- Identifying user intent for university-related inquiries  

## ๐Ÿงฏ Limitations

- Small training dataset (50 rows)  
- English-only  
- May group distinct topics if vocabulary overlaps  

## ๐Ÿ“ How to Use

```python
from bertopic import BERTopic

# Load model
topic_model = BERTopic.load("your-local-folder-or-hf-repo-name")

# Transform new docs
topics, probs = topic_model.transform(docs)