File size: 1,068 Bytes
514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 514d504 cc44585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
tags:
- topic-modeling
- bertopic
- university
- admissions
- mmr
- keybert
---
# ๐ง bertopic-admissions-mmr-keybert
This model is a fine-tuned BERTopic model for clustering university admissions-related questions and documents using Maximal Marginal Relevance (MMR) and KeyBERT-based keyword generation.
## ๐๏ธ Model Details
**Base Model:** BERTopic (HuggingFace Transformers + UMAP + HDBSCAN)
**Embedding Model:** `all-MiniLM-L6-v2`
**Keyword Method:** MMR + KeyBERT
**Training Data:** 50-question CSV dataset on university admissions topics
**Date Trained:** April 2025
## ๐ Intended Use
- Question clustering for FAQ and chatbot systems
- Identifying user intent for university-related inquiries
## ๐งฏ Limitations
- Small training dataset (50 rows)
- English-only
- May group distinct topics if vocabulary overlaps
## ๐ How to Use
```python
from bertopic import BERTopic
# Load model
topic_model = BERTopic.load("your-local-folder-or-hf-repo-name")
# Transform new docs
topics, probs = topic_model.transform(docs)
|