--- library_name: transformers base_model: answerdotai/ModernBERT-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ModernEMO-wheel-large-multilabel results: [] --- # ModernEMO-wheel-large-multilabel This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1904 - F1: 0.6756 - Roc Auc: 0.8001 - Accuracy: 0.5859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.2058 | 1.0 | 5427 | 0.1861 | 0.6627 | 0.7864 | 0.5676 | | 0.1458 | 2.0 | 10854 | 0.1904 | 0.6756 | 0.8001 | 0.5859 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0